دورية أكاديمية

Balanced spatiotemporal arrangements of histone H3 and H4 posttranslational modifications are necessary for meiotic prophase I chromosome organization.

التفاصيل البيبلوغرافية
العنوان: Balanced spatiotemporal arrangements of histone H3 and H4 posttranslational modifications are necessary for meiotic prophase I chromosome organization.
المؤلفون: Kumar SL; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India., Mohanty A; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India., Kumari A; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India., Etikuppam AK; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India., Kumar S R; National Institute of Animal Biotechnology, Hyderabad, Telangana, India., Athar M; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India., Kumar P K; National Institute of Animal Biotechnology, Hyderabad, Telangana, India., Beniwal R; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.; Graduate Studies, Regional Center for Biotechnology, Faridabad, Haryana, India., Potula MM; National Institute of Animal Biotechnology, Hyderabad, Telangana, India., Gandham RK; Division of Veterinary Biotechnology, ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh, India., Rao HBDP; National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
المصدر: Journal of cellular physiology [J Cell Physiol] 2024 Apr; Vol. 239 (4), pp. e31201. Date of Electronic Publication: 2024 Jan 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Histones*/metabolism , Meiotic Prophase I* , Protein Processing, Post-Translational* , Spermatocytes*/cytology , Spermatocytes*/metabolism, Animals ; Male ; Mice ; Chromatin/genetics ; Heterochromatin ; Meiosis
مستخلص: Dynamic nuclear architecture and chromatin organizations are the key features of the mid-prophase I in mammalian meiosis. The chromatin undergoes major changes, including meiosis-specific spatiotemporal arrangements and remodeling, the establishment of chromatin loop-axis structure, pairing, and crossing over between homologous chromosomes, any deficiencies in these events may induce genome instability, subsequently leading to failure to produce gametes and infertility. Despite the significance of chromatin structure, little is known about the location of chromatin marks and the necessity of their balance during meiosis prophase I. Here, we show a thorough cytological study of the surface-spread meiotic chromosomes of mouse spermatocytes for H3K9,14,18,23,27,36, H4K12,16 acetylation, and H3K4,9,27,36 methylation. Active acetylation and methylation marks on H3 and H4, such as H3K9ac, H3K14ac, H3K18ac, H3K36ac, H3K56ac, H4K12ac, H4K16ac, and H3K36me3 exhibited pan-nuclear localization away from heterochromatin. In comparison, repressive marks like H3K9me3 and H3K27me3 are localized to heterochromatin. Further, taking advantage of the delivery of small-molecule chemical inhibitors methotrexate (heterochromatin enhancer), heterochromatin inhibitor, anacardic acid (histone acetyltransferase inhibitor), trichostatin A (histone deacetylase inhibitor), IOX1 (JmjC demethylases inhibitor), and AZ505 (methyltransferase inhibitor) in seminiferous tubules through the rete testis route, revealed that alteration in histone modifications enhanced the centromere mislocalization, chromosome breakage, altered meiotic recombination and reduced sperm count. Specifically, IOX1 and AZ505 treatment shows severe meiotic phenotypes, including altering chromosome axis length and chromatin loop size via transcriptional regulation of meiosis-specific genes. Our findings highlight the importance of balanced chromatin modifications in meiotic prophase I chromosome organization and instability.
(© 2024 Wiley Periodicals LLC.)
References: Abe, H., Yeh, Y. H., Munakata, Y., Ishiguro, K. I., Andreassen, P. R., & Namekawa, S. H. (2022). Active DNA damage response signaling initiates and maintains meiotic sex chromosome inactivation. Nature Communications, 13(1), 7212. https://doi.org/10.1038/s41467-022-34295-5.
Acquaviva, L., Boekhout, M., Karasu, M. E., Brick, K., Pratto, F., Li, T., van Overbeek, M., Kauppi, L., Camerini‐Otero, R. D., Jasin, M., & Keeney, S. (2020). Ensuring meiotic DNA break formation in the mouse pseudoautosomal region. Nature, 582(7812), 426–431. https://doi.org/10.1038/s41586-020-2327-4.
Acquaviva, L., Székvölgyi, L., Dichtl, B., Dichtl, B. S., Saint André, C. L. R., Nicolas, A., & Géli, V. (2013). The COMPASS subunit Spp1 links histone methylation to initiation of meiotic recombination. Science, 339(6116), 215–218. https://doi.org/10.1126/science.1225739.
Alavattam, K. G., Maezawa, S., Andreassen, P. R., & Namekawa, S. H. (2021). Meiotic sex chromosome inactivation and the XY body: A phase separation hypothesis. Cellular and Molecular Life Sciences, 79(1), 18. https://doi.org/10.1007/s00018-021-04075-3.
Aricthota, S., Rana, P. P., & Haldar, D. (2022). Histone acetylation dynamics in repair of DNA double‐strand breaks. Frontiers in Genetics, 13, 926577. https://doi.org/10.3389/fgene.2022.926577.
Baker, S. M., Plug, A. W., Prolla, T. A., Bronner, C. E., Harris, A. C., Yao, X., Christie, D. M., Monell, C., Arnheim, N., Bradley, A., Ashley, T., & Liskay, R. M. (1996). Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nature Genetics, 13(3), 336–342. https://doi.org/10.1038/ng0796-336.
Bani Ismail, M., Shinohara, M., & Shinohara, A. (2014). Dot1‐dependent histone H3K79 methylation promotes the formation of meiotic double‐strand breaks in the absence of histone H3K4 methylation in budding yeast. PLoS One, 9(5), e96648. https://doi.org/10.1371/journal.pone.0096648.
Barlow, A. L. (1997). Distribution of the Rad51 recombinase in human and mouse spermatocytes. The EMBO Journal, 16(17), 5207–5215. https://doi.org/10.1093/emboj/16.17.5207.
Baudat, F., Buard, J., Grey, C., Fledel‐Alon, A., Ober, C., Przeworski, M., Coop, G., & de Massy, B. (2010). PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science, 327(5967), 836–840. https://doi.org/10.1126/science.1183439.
Baumann, C., Ma, W., Wang, X., Kandasamy, M. K., Viveiros, M. M., & De La Fuente, R. (2020). Helicase LSH/Hells regulates kinetochore function, histone H3/Thr3 phosphorylation and centromere transcription during oocyte meiosis. Nature Communications, 11(1), 4486. https://doi.org/10.1038/s41467-020-18009-3.
Bessler, J. B., Andersen, E. C., & Villeneuve, A. M. (2010). Differential localization and independent acquisition of the H3K9me2 and H3K9me3 chromatin modifications in the Caenorhabditis elegans adult germ line. PLoS Genetics, 6(1), e1000830. https://doi.org/10.1371/journal.pgen.1000830.
Biggs, R. J., Liu, N., Peng, Y., Marko, J. F., & Qiao, H. (2020). Micromanipulation of prophase I chromosomes from mouse spermatocytes reveals high stiffness and gel‐like chromatin organization. Communications Biology, 3(1), 542. https://doi.org/10.1038/s42003-020-01265-w.
Bondarieva, A., Raveendran, K., Telychko, V., Rao, H. B. D. P., Ravindranathan, R., Zorzompokou, C., Finsterbusch, F., Dereli, I., Papanikos, F., Tränkner, D., Schleiffer, A., Fei, J. F., Klimova, A., Ito, M., Kulkarni, D. S., Roeder, I., Hunter, N., & Tóth, A. (2020). Proline‐rich protein PRR19 functions with cyclin‐like CNTD1 to promote meiotic crossing over in mouse. Nature Communications, 11(1), 3101. https://doi.org/10.1038/s41467-020-16885-3.
Borde, V., Robine, N., Lin, W., Bonfils, S., Géli, V., & Nicolas, A. (2009). Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. The EMBO Journal, 28(2), 99–111. https://doi.org/10.1038/emboj.2008.257.
Castonguay, E., White, S. A., Kagansky, A., St‐Cyr, D. J., Castillo, A. G., Brugger, C., White, R., Bonilla, C., Spitzer, M., Earnshaw, W. C., Schalch, T., Ekwall, K., Tyers, M., & Allshire, R. C. (2015). Panspecies small‐molecule disruptors of heterochromatin‐mediated transcriptional gene silencing. Molecular and Cellular Biology, 35(4), 662–674. https://doi.org/10.1128/MCB.01102-14.
Chukrallah, L. G., Badrinath, A., Vittor, G. G., & Snyder, E. M. (2022). ADAD2 regulates heterochromatin in meiotic and post‐meiotic male germ cells via translation of MDC1. Journal of Cell Science, 135(4), jcs259196. https://doi.org/10.1242/jcs.259196.
de la Fuente, R., Pratto, F., Hernández‐Hernández, A., Manterola, M., López‐Jiménez, P., Gómez, R., Viera, A., Parra, M. T., Kouznetsova, A., Camerini‐Otero, R. D., & Page, J. (2021). Epigenetic dysregulation of mammalian male meiosis caused by interference of recombination and synapsis. Cells, 10(9), 2311.
Eyster, C., Chuong, H. H., Lee, C. Y., Pezza, R. J., & Dawson, D. (2019). The pericentromeric heterochromatin of homologous chromosomes remains associated after centromere pairing dissolves in mouse spermatocyte meiosis. Chromosoma, 128(3), 355–367. https://doi.org/10.1007/s00412-019-00708-6.
Fernandez‐Capetillo, O., Mahadevaiah, S. K., Celeste, A., Romanienko, P. J., Camerini‐Otero, R. D., Bonner, W. M., Manova, K., Burgoyne, P., & Nussenzweig, A. (2003). H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Developmental Cell, 4(4), 497–508. https://doi.org/10.1016/s1534-5807(03)00093-5.
Fukagawa, T. (2017). Critical histone post‐translational modifications for centromere function and propagation. Cell Cycle, 16(13), 1259–1265. https://doi.org/10.1080/15384101.2017.1325044.
Getun, I. V., Wu, Z., Fallahi, M., Ouizem, S., Liu, Q., Li, W., Costi, R., Roush, W. R., Cleveland, J. L., & Bois, P. R. (2017). Functional roles of acetylated histone marks at mouse meiotic recombination hot spots. Molecular and Cellular Biology, 37(3), e00942–15.
Grey, C., & de Massy, B. (2021). Chromosome organization in early meiotic prophase. Frontiers in Cell and Developmental Biology, 9, 688878. https://doi.org/10.3389/fcell.2021.688878.
Hu, J., Donahue, G., Dorsey, J., Govin, J., Yuan, Z., Garcia, B. A., Shah, P. P., & Berger, S. L. (2015). H4K44 acetylation facilitates chromatin accessibility during meiosis. Cell Reports, 13(9), 1772–1780. https://doi.org/10.1016/j.celrep.2015.10.070.
Huang, T., Yuan, S., Gao, L., Li, M., Yu, X., Zhan, J., Yin, Y., Liu, C., Zhang, C., Lu, G., & Li, W. (2020). The histone modification reader ZCWPW1 links histone methylation to PRDM9‐induced double‐strand break repair. Elife, 9, e53459.
Hunter, N. (2015). Meiotic recombination: The essence of heredity. Cold Spring Harbor Perspectives in Biology, 7(12), a016618. https://doi.org/10.1101/cshperspect.a016618.
Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080. https://doi.org/10.1126/science.1063127.
Jin, X., Fudenberg, G., & Pollard, K. S. (2021). Genome‐wide variability in recombination activity is associated with meiotic chromatin organization. Genome Research, 31(9), 1561–1572. https://doi.org/10.1101/gr.275358.121.
Kelly, W. G., & Aramayo, R. (2007). Meiotic silencing and the epigenetics of sex. Chromosome Research, 15(5), 633–651. https://doi.org/10.1007/s10577-007-1143-0.
Khalil, A. M., Boyar, F. Z., & Driscoll, D. J. (2004). Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proceedings of the National Academy of Sciences, 101(47), 16583–16587. https://doi.org/10.1073/pnas.0406325101.
Kota, S. K., & Feil, R. (2010). Epigenetic transitions in germ cell development and meiosis. Developmental Cell, 19(5), 675–686. https://doi.org/10.1016/j.devcel.2010.10.009.
Lam, K. W. G., Brick, K., Cheng, G., Pratto, F., & Camerini‐Otero, R. D. (2019). Cell‐type‐specific genomics reveals histone modification dynamics in mammalian meiosis. Nature Communications, 10(1), 3821. https://doi.org/10.1038/s41467-019-11820-7.
Lei, W. L., Han, F., Hu, M. W., Liang, Q. X., Meng, T. G., Zhou, Q., Ouyang, Y. C., Hou, Y., Schatten, H., Wang, Z. B., & Sun, Q. Y. (2020). Protein phosphatase 6 is a key factor regulating spermatogenesis. Cell Death & Differentiation, 27(6), 1952–1964.
Legoff, L., Dali, O., De La Mata Santaella, E., Jaulin, C., D'Cruz, S. C., & Smagulova, F. (2021). Histone deacetylase inhibition leads to regulatory histone mark alterations and impairs meiosis in oocytes. Epigenetics & Chromatin, 14(1), 39. https://doi.org/10.1186/s13072-021-00413-8.
Loyola, A. C., Zhang, L., Shang, R., Dutta, P., Li, J., & Li, W. X. (2019). Identification of methotrexate as a heterochromatin‐promoting drug. Scientific Reports, 9(1), 11673. https://doi.org/10.1038/s41598-019-48137-w.
Modzelewski, A. J., Hilz, S., Crate, E. A., Schweidenback, C. T. H., Fogarty, E. A., Grenier, J. K., Freire, R., Cohen, P. E., & Grimson, A. (2015). Dgcr8 and Dicer are essential for sex chromosome integrity during meiosis in males. Journal of Cell Science, 128(12), 2314–2327. https://doi.org/10.1242/jcs.167148.
Moretti, C., Vaiman, D., Tores, F., & Cocquet, J. (2016). Expression and epigenomic landscape of the sex chromosomes in mouse post‐meiotic male germ cells. Epigenetics & Chromatin, 9, 47. https://doi.org/10.1186/s13072-016-0099-8.
Mursalimov, S., Deineko, E., Houben, A., & Demidov, D. (2019). Histone modifications during tobacco male meiosis. In (Vol. 63:). Biologia Plantarum.
Naumova, A. K., Fayer, S., Leung, J., Boateng, K. A., Camerini‐Otero, R. D., & Taketo, T. (2013). Dynamics of response to asynapsis and meiotic silencing in spermatocytes from Robertsonian translocation carriers. PLoS One, 8(9), e75970. https://doi.org/10.1371/journal.pone.0075970.
Novak, I., Wang, H., Revenkova, E., Jessberger, R., Scherthan, H., & Höög, C. (2008). Cohesin Smc1β determines meiotic chromatin axis loop organization. The Journal of Cell Biology, 180(1), 83–90. https://doi.org/10.1083/jcb.200706136.
Oliver, C., Pradillo, M., Corredor, E., & Cuñado, N. (2013). The dynamics of histone H3 modifications is species‐specific in plant meiosis. Planta, 238(1), 23–33. https://doi.org/10.1007/s00425-013-1885-1.
Ontoso, D., Kauppi, L., Keeney, S., & San‐Segundo, P. A. (2014). Dynamics of DOT1L localization and H3K79 methylation during meiotic prophase I in mouse spermatocytes. Chromosoma, 123(1–2), 147–164. https://doi.org/10.1007/s00412-013-0438-5.
Paigen, K., & Petkov, P. M. (2018). PRDM9 and its role in genetic recombination. Trends in Genetics, 34(4), 291–300. https://doi.org/10.1016/j.tig.2017.12.017.
Parvanov, E. D., Petkov, P. M., & Paigen, K. (2010). Prdm9 controls activation of mammalian recombination hotspots. Science, 327(5967), 835. https://doi.org/10.1126/science.1181495.
Parvanov, E. D., Tian, H., Billings, T., Saxl, R. L., Spruce, C., Aithal, R., Krejci, L., Paigen, K., & Petkov, P. M. (2017). PRDM9 interactions with other proteins provide a link between recombination hotspots and the chromosomal axis in meiosis. Molecular Biology of the Cell, 28(3), 488–499. https://doi.org/10.1091/mbc.E16-09-0686.
Peters, A. H. F. M., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C., Weipoltshammer, K., Pagani, M., Lachner, M., Kohlmaier, A., Opravil, S., Doyle, M., Sibilia, M., & Jenuwein, T. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 107(3), 323–337. https://doi.org/10.1016/s0092-8674(01)00542-6.
Peters, A. H. F. M., Plug, A. W., van Vugt, M. J., & Boer, P. (1997). A drying‐down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Research, 5(1), 66–68. https://doi.org/10.1023/a:1018445520117.
Prakash, K., Fournier, D., Redl, S., Best, G., Borsos, M., Tiwari, V. K., Tachibana‐Konwalski, K., Ketting, R. F., Parekh, S. H., Cremer, C., & Birk, U. J. (2015). Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proceedings of the National Academy of Sciences, 112(47), 14635–14640. https://doi.org/10.1073/pnas.1516928112.
Qiao, H., Prasada Rao, H. B. D., Yang, Y., Fong, J. H., Cloutier, J. M., Deacon, D. C., Nagel, K. E., Swartz, R. K., Strong, E., Holloway, J. K., Cohen, P. E., Schimenti, J., Ward, J., & Hunter, N. (2014). Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nature Genetics, 46(2), 194–199. https://doi.org/10.1038/ng.2858.
Qin, Y., Liu, L., He, Y., Wang, C., Liang, M., Chen, X., Hao, H., Qin, T., Zhao, X., & Wang, D. (2016). Testicular busulfan injection in mice to prepare recipients for spermatogonial stem cell transplantation is safe and non‐toxic. PLoS One, 11(2), e0148388. https://doi.org/10.1371/journal.pone.0148388.
Rao, H. B. D. P., Qiao, H., Bhatt, S. K., Bailey, L. R. J., Tran, H. D., Bourne, S. L., Qiu, W., Deshpande, A., Sharma, A. N., Beebout, C. J., Pezza, R. J., & Hunter, N. (2017). A SUMO‐ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science, 355(6323), 403–407. https://doi.org/10.1126/science.aaf6407.
Russell, L. D., Saxena, N. K., & Weber, J. E. (1987). Intratesticular injection as a method to assess the potential toxicity of various agents and to study mechanisms of normal spermatogenesis. Gamete Research, 17(1), 43–56. https://doi.org/10.1002/mrd.1120170106.
Schiller, R., Scozzafava, G., Tumber, A., Wickens, J. R., Bush, J. T., Rai, G., Lejeune, C., Choi, H., Yeh, T. L., Chan, M. C., Mott, B. T., McCullagh, J. S. O., Maloney, D. J., Schofield, C. J., & Kawamura, A. (2014). A cell‐permeable ester derivative of the JmjC histone demethylase inhibitor IOX1. ChemMedChem, 9(3), 566–571. https://doi.org/10.1002/cmdc.201300428.
Shilo, S., Melamed‐Bessudo, C., Dorone, Y., Barkai, N., & Levy, A. A. (2015). DNA crossover motifs associated with epigenetic modifications delineate open chromatin regions in Arabidopsis. The Plant Cell, 27(9), 2427–2436. https://doi.org/10.1105/tpc.15.00391.
Sin, H. S., Barski, A., Zhang, F., Kartashov, A. V., Nussenzweig, A., Chen, J., Andreassen, P. R., & Namekawa, S. H. (2012). RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post‐meiotic spermatids. Genes & Development, 26(24), 2737–2748. https://doi.org/10.1101/gad.202713.112.
Smagulova, F., Gregoretti, I. V., Brick, K., Khil, P., Camerini‐Otero, R. D., & Petukhova, G. V. (2011). Genome‐wide analysis reveals novel molecular features of mouse recombination hotspots. Nature, 472(7343), 375–378. https://doi.org/10.1038/nature09869.
Song, M. K., Jung, S., Hong, S., Kwon, J. O., Kim, M. K., & Kim, H. H. (2021). Effects of the lysine methyltransferase inhibitor AZ505 on bone metabolism. Journal of Bone Metabolism, 28(4), 297–305. https://doi.org/10.11005/jbm.2021.28.4.297.
Spruce, C., Dlamini, S., Ananda, G., Bronkema, N., Tian, H., Paigen, K., Carter, G. W., & Baker, C. L. (2020). HELLS and PRDM9 form a pioneer complex to open chromatin at meiotic recombination hot spots. Genes & Development, 34(5–6), 398–412.
Staff, P. O. (2020). Correction: Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice. PLoS ONE, 15(10), e0237446. https://doi.org/10.1371/journal.pone.0237446.
Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45. https://doi.org/10.1038/47412.
Sullivan, B. A., & Karpen, G. H. (2004). Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Structural & Molecular Biology, 11(11), 1076–1083. https://doi.org/10.1038/nsmb845.
Sun, Y., Jiang, X., Chen, S., & Price, B. D. (2006). Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Letters, 580(18), 4353–4356. https://doi.org/10.1016/j.febslet.2006.06.092.
Sun, Z., Zhang, Y., Jia, J., Fang, Y., Tang, Y., Wu, H., & Fang, D. (2020). H3K36me3, message from chromatin to DNA damage repair. Cell & Bioscience, 10, 9. https://doi.org/10.1186/s13578-020-0374-z.
Tachibana, M., Nozaki, M., Takeda, N., & Shinkai, Y. (2007). Functional dynamics of H3K9 methylation during meiotic prophase progression. The EMBO Journal, 26(14), 3346–3359. https://doi.org/10.1038/sj.emboj.7601767.
Tatehana, M., Kimura, R., Mochizuki, K., Inada, H., & Osumi, N. (2020). Comprehensive histochemical profiles of histone modification in male germline cells during meiosis and spermiogenesis: Comparison of young and aged testes in mice. PloS ONE, 15(4), e0230930.
Tease, C., & Hultén, M. A. (2004). Inter‐sex variation in synaptonemal complex lengths largely determine the different recombination rates in male and female germ cells. Cytogenetic and Genome Research, 107(3–4), 208–215. https://doi.org/10.1159/000080599.
Tóth, A., Székvölgyi, L., & Vellai, T. (2022). The genome loading model for the origin and maintenance of sex in eukaryotes. Biologia Futura, 73(4), 345–357. https://doi.org/10.1007/s42977-022-00148-x.
Turinetto, V., & Giachino, C. (2015). Multiple facets of histone variant H2AX: A DNA double‐strand‐break marker with several biological functions. Nucleic Acids Research, 43(5), 2489–2498. https://doi.org/10.1093/nar/gkv061.
Turner, J. M. A. (2007). Meiotic sex chromosome inactivation. Development, 134(10), 1823–1831. https://doi.org/10.1242/dev.000018.
Vigushin, D. M., Ali, S., Pace, P. E., Mirsaidi, N., Ito, K., Adcock, I., & Coombes, R. C. (2001). Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 7(4), 971–976.
de Vries, M., Vosters, S., Merkx, G., D'Hauwers, K., Wansink, D. G., Ramos, L., & de Boer, P. (2012). Human male meiotic sex chromosome inactivation. PLoS ONE, 7(2), e31485. https://doi.org/10.1371/journal.pone.0031485.
Wang, C., Huang, J., Li, Y., Zhang, J., He, C., Li, T., Jiang, D., Dong, A., Ma, H., Copenhaver, G. P., & Wang, Y. (2022). DNA polymerase epsilon binds histone H3.1‐H4 and recruits MORC1 to mediate meiotic heterochromatin condensation. Proceedings of the National Academy of Sciences, 119(43), e2213540119. https://doi.org/10.1073/pnas.2213540119.
Wang, L., Xu, Z., Khawar, M. B., Liu, C., & Li, W. (2017). The histone codes for meiosis. Reproduction (Cambridge, England), 154(3), R65–R79. https://doi.org/10.1530/REP-17-0153.
Wang, Y., Wang, H., Zhang, Y., Du, Z., Si, W., Fan, S., Qin, D., Wang, M., Duan, Y., Li, L., Jiao, Y., Li, Y., Wang, Q., Shi, Q., Wu, X., & Xie, W. (2019). Reprogramming of meiotic chromatin architecture during spermatogenesis. Molecular Cell, 73(3):547–561.e6. https://doi.org/10.1016/j.molcel.2018.11.019.
Wells, D., Bitoun, E., Moralli, D., Zhang, G., Hinch, A., Jankowska, J., Donnelly, P., Green, C., & Myers, S. R. (2020). ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair. eLife, 9. https://doi.org/10.7554/eLife.53392.
Xu, D., Bai, J., Duan, Q., Costa, M., & Dai, W. (2009). Covalent modifications of histones during mitosis and meiosis. Cell Cycle, 8(22), 3688–3694. https://doi.org/10.4161/cc.8.22.9908.
Yadav, R. P., Mäkelä, J. A., Hyssälä, H., Cisneros‐Montalvo, S., & Kotaja, N. (2020). DICER regulates the expression of major satellite repeat transcripts and meiotic chromosome segregation during spermatogenesis. Nucleic Acids Research, 48(13), 7135–7153. https://doi.org/10.1093/nar/gkaa460.
Yuan, L., Liu, J. G., Zhao, J., Brundell, E., Daneholt, B., & Höög, C. (2000). The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Molecular Cell, 5(1), 73–83. https://doi.org/10.1016/s1097-2765(00)80404-9.
Zickler, D., & Kleckner, N. (2015). Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harbor Perspectives in Biology, 7(6), a016626. https://doi.org/10.1101/cshperspect.a016626.
معلومات مُعتمدة: C0031 NIAB core funds; BT/PR31689/AAQ/1/747/2019 DBT; BT/RLF/Re-entry/21/2016 DBT Ramalingaswami fellowship
فهرسة مساهمة: Keywords: chromatin organization; genome stability; histone H3 and H4 posttranslational modifications; meiosis prophase I
تواريخ الأحداث: Date Created: 20240129 Date Completed: 20240412 Latest Revision: 20240520
رمز التحديث: 20240521
DOI: 10.1002/jcp.31201
PMID: 38284481
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.31201