دورية أكاديمية

Mycoremediation of Industrial Textile Wastewater Using Ganoderma lucidum Pellets and Activated Dolomite in Batch Bioreactor.

التفاصيل البيبلوغرافية
العنوان: Mycoremediation of Industrial Textile Wastewater Using Ganoderma lucidum Pellets and Activated Dolomite in Batch Bioreactor.
المؤلفون: Zahuri AA; Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia., Wan Mohtar WHM; Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia., Hanafiah ZM; Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.; Department of Civil Engineering, Faculty of Engineering and Build Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia., Abdul Patah MF; Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia., Show PL; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia., Gafforov Y; Central Asian Center for Development Studies, New Uzbekistan University, 100000, Tashkent, Uzbekistan., Wan-Mohtar WAAQI; Functional Omics and Bioprocess Development Laboratory, Faculty of Science, Institute of Biological Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. qadyr@um.edu.my.
المصدر: Molecular biotechnology [Mol Biotechnol] 2024 Jan 29. Date of Electronic Publication: 2024 Jan 29.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Switzerland NLM ID: 9423533 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-0305 (Electronic) Linking ISSN: 10736085 NLM ISO Abbreviation: Mol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: [Cham] : Springer
Original Publication: Totowa, NJ : Humana Press, c1994-
مستخلص: In the world of fast fashion, textile industries are blooming rapidly to meet the consumer's demands. However, vast amounts of wastewater have been constantly produced, and it is becoming a serious environmental problem in the waterways. Although the technology for treating textile wastewater has been well reported and established, more sustainable efforts have taken the attention nowadays. Through the use of living Malaysian Ganoderma lucidum mycelial pellets (GL) and activated dolomite (AD) in the treatment system, the study explores the synergy between biosorption and physisorption as alternative treatment for textile wastewater. In the current work, mixture of GL premixed with AD (50:50; v/v) is used to treat industrial textile wastewater. The morphology, adsorption characteristics, and antibacterial activity of the adsorbents were studied. The mixture of adsorbents is capable of removing colours by 77.8% and reducing chemical oxygen demand (COD) by 75% within 48 h contact. Furthermore, the kinetic and adsorption had been studied and follow the pseudo-first-order kinetic model while both adsorption of Langmuir and Freundlich model was deduced from the treatment. In addition, antimicrobial activities from the treatment potentially reduced 10 × 10 1  CFU/mL after 48 h. The synergistic treatment by Ganoderma lucidum mycelial pellets and activated dolomite has immense potential in future wastewater treatment technology to obtain cleaner water.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Abdullah, N. R., Sharif, F., Azizan, N. H., Hafidz, I. F. M., Supramani, S., Usuldin, S. R. A., Ahmad, R., & Wan-Mohtar, W. A. A. Q. I. (2020). Pellet diameter of ganoderma lucidum in a repeated-batch fermentation for the trio total production of biomass-exopolysaccharide-endopolysaccharide and its anti-oral cancer beta-glucan response. AIMS Microbiology, 6(4), 379–400. https://doi.org/10.3934/microbiol.2020023. (PMID: 10.3934/microbiol.2020023333645347755588)
Aghalari, Z., Dahms, H. U., Sillanpää, M., Sosa-Hernandez, J. E., & Parra-Saldívar, R. (2020). Effectiveness of wastewater treatment systems in removing microbial agents: A systematic review. Globalization and Health, 16(1), 1–11. https://doi.org/10.1186/S12992-020-0546-Y/TABLES/4. (PMID: 10.1186/S12992-020-0546-Y/TABLES/4)
Ahmed, S. F., Mofijur, M., Nuzhat, S., Chowdhury, A. T., Rafa, N., Uddin, M. A., Inayat, A., Mahlia, T. M. I., Ong, H. C., Chia, W. Y., & Show, P. L. (2021). Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. Journal of Hazardous Materials, 416, 125912. https://doi.org/10.1016/J.JHAZMAT.2021.125912. (PMID: 10.1016/J.JHAZMAT.2021.12591234492846)
Alalwan, H. A., Kadhom, M. A., & Alminshid, A. H. (2020). Removal of heavy metals from wastewater using agricultural byproducts. Journal of Water Supply: Research and Technology-Aqua, 69(2), 99–112. https://doi.org/10.2166/AQUA.2020.133. (PMID: 10.2166/AQUA.2020.133)
And, O. F. O., & Odebunmi, E. O. (2010). Freundlich and Langmuir isotherms parameters for adsorption of methylene blue by activated carbon derived from Agrowasteso: Freundlich and Langmuir isotherms parameters for adsorption of methylene blue by activated carbon derived from Agrowastes. Advances in Natural and Applied Sciences, 4(3), 281–288.
Aziz, H. A., Razak, M. H. A., Rahim, M. Z. A., Kamar, W. I. S. W., Abu Amr, S. S., Hussain, S., & Van Leeuwen, J. (2018). Evaluation and comparison the performance of titanium and zirconium(IV) tetrachloride in textile wastewater treatment. Data in Brief, 18, 920–927. https://doi.org/10.1016/J.DIB.2018.03.113. (PMID: 10.1016/J.DIB.2018.03.113299002595996596)
Basava Rao, V. V., Rao, R. M., & S. (2006). Adsorption studies on treatment of textile dyeing industrial effluent by flyash. Chemical Engineering Journal, 116(1), 77–84. https://doi.org/10.1016/J.CEJ.2005.09.029. (PMID: 10.1016/J.CEJ.2005.09.029)
Calugaru, I. L., Neculita, C. M., Genty, T., Bussière, B., & Potvin, R. (2016). Performance of thermally activated dolomite for the treatment of Ni and Zn in contaminated neutral drainage. Journal of Hazardous Materials, 310, 48–55. https://doi.org/10.1016/j.jhazmat.2016.01.069. (PMID: 10.1016/j.jhazmat.2016.01.06926897574)
Chiavola, A., Farabegoli, G., & Rolle, E. (2010). Combined biological and chemical-physical process for olive mill wastewater treatment. Desalination and Water Treatment, 23(1–3), 135–140. https://doi.org/10.5004/DWT.2010.1987. (PMID: 10.5004/DWT.2010.1987)
Chung, H. K., Kim, W. H., Park, J., Cho, J., Jeong, T. Y., & Park, P. K. (2015). Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. Journal of Industrial and Engineering Chemistry, 28, 241–246. https://doi.org/10.1016/J.JIEC.2015.02.021. (PMID: 10.1016/J.JIEC.2015.02.021)
Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155. https://doi.org/10.1007/S10311-018-0785-9/TABLES/1. (PMID: 10.1007/S10311-018-0785-9/TABLES/1)
Dutta, D., Arya, S., & Kumar, S. (2021). Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere, 285, 131245. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131245. (PMID: 10.1016/J.CHEMOSPHERE.2021.13124534246094)
Edet, U. A., & Ifelebuegu, A. O. (2020). Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 8(6), 665. https://doi.org/10.3390/PR8060665. (PMID: 10.3390/PR8060665)
Estrada, J. M., Kraakman, N. J. R., Lebrero, R., & Muñoz, R. (2012). A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies. Biotechnology Advances, 30(6), 1354–1363. https://doi.org/10.1016/J.BIOTECHADV.2012.02.010. (PMID: 10.1016/J.BIOTECHADV.2012.02.01022366514)
Farmaki, S., Vorrisi, E., Karakasi, O. K., & Moutsatsou, A. (2018). Effect of limestone and dolomite tailings’ particle size on potentially toxic elements adsorption. Open Geosciences, 10(1), 726–739. https://doi.org/10.1515/GEO-2018-0058/MACHINEREADABLECITATION/RIS. (PMID: 10.1515/GEO-2018-0058/MACHINEREADABLECITATION/RIS)
Fortunato, L., Elcik, H., Blankert, B., Ghaffour, N., & Vrouwenvelder, J. (2021). Textile dye wastewater treatment by direct contact membrane distillation: Membrane performance and detailed fouling analysis. Journal of Membrane Science, 636, 119552. https://doi.org/10.1016/J.MEMSCI.2021.119552. (PMID: 10.1016/J.MEMSCI.2021.119552)
Fu, Y., & Viraraghavan, T. (2001). Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79(3), 251–262. https://doi.org/10.1016/S0960-8524(01)00028-1. (PMID: 10.1016/S0960-8524(01)00028-111499579)
Ghaemi, A., Torab-Mostaedi, M., & Ghannadi-Maragheh, M. (2011). Characterizations of strontium(II) and barium(II) adsorption from aqueous solutions using dolomite powder. Journal of Hazardous Materials, 190(1), 916–921. https://doi.org/10.1016/J.JHAZMAT.2011.04.006. (PMID: 10.1016/J.JHAZMAT.2011.04.00621524844)
Gita, S., Hussan, A., Choudhury, T. G., Gita, S., Soholars, P., & Hussan, A. (2017). Impact of textile dyes waste on aquatic environments and its treatment. Environment & Ecology, 35(3C), 2349–2353.
Gutiérrez, M., Etxebarria, J., & De Las Fuentes, L. (2002). Evaluation of wastewater toxicity: Comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research, 36(4), 919–924. https://doi.org/10.1016/S0043-1354(01)00299-8. (PMID: 10.1016/S0043-1354(01)00299-811848362)
Hafidz, I. F. M., Ramli, M. S., Abdullah, N. R., Wan-Mohtar, W. A. A. Q. I., Azizan, N. H., & Sharif, F. (2022). Decolorization potential of bacteria isolated from Sungai Lembing hot springs and Ganoderma lucidum on methyl red dye. AIP Conference Proceedings, 2454(1), 050027. https://doi.org/10.1063/5.0078615. (PMID: 10.1063/5.0078615)
Hakami, M. W., Alkhudhiri, A., Al-Batty, S., Zacharof, M. P., Maddy, J., & Hilal, N. (2020). Ceramic microfiltration membranes in wastewater treatment: filtration behavior fouling and prevention. Membranes, 10(9), 248. https://doi.org/10.3390/MEMBRANES10090248. (PMID: 10.3390/MEMBRANES10090248329719637558661)
Hanafiah, Z. M., Wan Mohtar, W. H. M., Hasan, H. A., Jensen, H. S., Klaus, A., Sharil, S., & Wan-Mohtar, W. A. A. Q. I. (2022). Ability of Ganoderma lucidum mycelial pellets to remove ammonia and organic matter from domestic wastewater. International Journal of Environmental Science and Technology, 19(8), 7307–7320. https://doi.org/10.1007/S13762-021-03633-3/TABLES/1. (PMID: 10.1007/S13762-021-03633-3/TABLES/1)
Hassaan, M. A., & Nemr, AEl. (2017). Health and environmental impacts of dyes: Mini review. American Journal of Environmental Science and Engineering, 1(3), 64–67.
Ipeaiyeda, A. R., Adenipekun, C. O., & Oluwole, O. (2020). Bioremediation potential of Ganoderma lucidum (Curt:Fr) P. Karsten to remove toxic metals from abandoned battery slag dumpsite soil and immobilisation of metal absorbed fungi in bricks. Cogent Environmental Science. https://doi.org/10.1080/23311843.2020.1847400. (PMID: 10.1080/23311843.2020.1847400)
Islam, M. R., & Mostafa, M. G. (2020). Characterization of textile dyeing effluent and its treatment using polyaluminum chloride. Applied Water Science, 10(5), 1–10. https://doi.org/10.1007/S13201-020-01204-4/TABLES/10. (PMID: 10.1007/S13201-020-01204-4/TABLES/10)
Ivanets, A. I., Kitikova, N. V., Shashkova, I. L., Oleksiienko, O. V., Levchuk, I., & Sillanpää, M. (2016). Using of phosphatized dolomite for treatment of real mine water from metal ions. Journal of Water Process Engineering, 9, 246–253. https://doi.org/10.1016/j.jwpe.2016.01.005. (PMID: 10.1016/j.jwpe.2016.01.005)
Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S. (2021). Surfactant adsorption isotherms: A review. ACS Omega, 6(48), 32342–32348. https://doi.org/10.1021/acsomega.1c04661. (PMID: 10.1021/acsomega.1c04661349015878655760)
Katha, P. S., Ahmed, Z., Alam, R., Saha, B., Acharjee, A., & Rahman, M. S. (2021). Efficiency analysis of eggshell and tea waste as Low cost adsorbents for Cr removal from wastewater sample. South African Journal of Chemical Engineering, 37, 186–195. https://doi.org/10.1016/J.SAJCE.2021.06.001. (PMID: 10.1016/J.SAJCE.2021.06.001)
Keharia, H., & Madamwar, D. (2003). Bioremediation concepts for treatment of dye containing wastewater: A review. Indian Journal of Experimental Biology, 41(9), 1068–1075. (PMID: 15242298)
Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., & Ciardelli, G. (2001). Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination, 138(1–3), 75–82. https://doi.org/10.1016/S0011-9164(01)00247-8. (PMID: 10.1016/S0011-9164(01)00247-8)
Mohd Hanafiah, Z., Wan Mohtar, W. H. M., Abu Hasan, H., Jensen, H. S., Klaus, A., & Wan-Mohtar, W. A. A. Q. I. (2019). Performance of wild-Serbian Ganoderma lucidum mycelium in treating synthetic sewage loading using batch bioreactor. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-52493-y. (PMID: 10.1038/s41598-019-52493-y)
Mooralitharan, S., Hanafiah, Z. M., Sustainability, T. A. M 2023 Vital Conditions to Remove Pollutants from Synthetic Wastewater Using Malaysian Ganoderma lucidum. Mdpi.Com. Retrieved March 14, 2023, from https://www.mdpi.com/2071-1050/15/4/3819.
Mubashar, M., Naveed, M., Mustafa, A., Ashraf, S., Baig, K. S., Alamri, S., Siddiqui, M. H., Zabochnicka-światek, M., Szota, M., & Kalaji, H. M. (2020). Experimental investigation of chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater. Water, 12(11), 3034. https://doi.org/10.3390/W12113034. (PMID: 10.3390/W12113034)
Nottingham, A. T., Hicks, L. C., Ccahuana, A. J. Q., Salinas, N., Bååth, E., & Meir, P. (2018). Nutrient limitations to bacterial and fungal growth during cellulose decomposition in tropical forest soils. Biology and Fertility of Soils, 54(2), 219–228. https://doi.org/10.1007/S00374-017-1247-4/FIGURES/4. (PMID: 10.1007/S00374-017-1247-4/FIGURES/4)
Nugroho, T. T., Akbar, I., Astina, D., Helianty, S., & Saputra, E. (2018). Colour removal of an azo-textile dye and production of laccase by submerged cultures of Trichoderma asperellum LBKURCC1. Journal of Physics: Conference Series, 1116(4), 042027. https://doi.org/10.1088/1742-6596/1116/4/042027. (PMID: 10.1088/1742-6596/1116/4/042027)
Pandey, A., Kalamdhad, A., & Chandra Sharma, Y. (2023). Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal: A sustainable approach integrating with waste management. Environmental Nanotechnology, Monitoring & Management, 20, 100791. https://doi.org/10.1016/J.ENMM.2023.100791. (PMID: 10.1016/J.ENMM.2023.100791)
Patabandige, D. S. B. T., Wadumethrige, S. H., & Wanniarachchi, S. (2020). Decolorization and cod removal from synthetic and real textile dye bath wastewater containing reactive black 5. Desalination and Water Treatment, 197, 392–401. https://doi.org/10.5004/dwt.2020.25954. (PMID: 10.5004/dwt.2020.25954)
Piol, M. N., Paricoto, M., Saralegui, A. B., Basack, S., Vullo, D., & Boeykens, S. P. (2019). Dolomite used in phosphate water treatment: Desorption processes, recovery, reuse and final disposition. Journal of Environmental Management, 237, 359–364. https://doi.org/10.1016/j.jenvman.2019.02.085. (PMID: 10.1016/j.jenvman.2019.02.08530818238)
Rajasulochana, P., & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2(4), 175–184. https://doi.org/10.1016/J.REFFIT.2016.09.004. (PMID: 10.1016/J.REFFIT.2016.09.004)
Rohmawati, L., Sholicha, S. P., Holisa, S. S., & Setyarsih, W. (2019). Identification of phase CaCO3/MgO in Bangkalan dolomite sand as an antibacterial substance. Journal of Physics: Conference Series, 1417(1), 012001. https://doi.org/10.1088/1742-6596/1417/1/012001. (PMID: 10.1088/1742-6596/1417/1/012001)
Salem, S. S., Mohamed, A. A., Gl-Gamal, M. S., Talat, M., & Fouda, A. (2019). Biological decolorization and degradation of azo dyes from textile wastewater effluent by aspergillus niger. Egyptian Journal of Chemistry, 62(10), 1799–1813. https://doi.org/10.21608/EJCHEM.2019.11720.1747. (PMID: 10.21608/EJCHEM.2019.11720.1747)
Samuchiwal, S., Gola, D., & Malik, A. (2021). Decolourization of textile effluent using native microbial consortium enriched from textile industry effluent. Journal of Hazardous Materials, 402, 123835. https://doi.org/10.1016/J.JHAZMAT.2020.123835. (PMID: 10.1016/J.JHAZMAT.2020.12383533254813)
Sawai, J., Himizu, K., & Yamamoto, O. (2005). Kinetics of bacterial death by heated dolomite powder slurry. Soil Biology and Biochemistry, 37(8), 1484–1489. https://doi.org/10.1016/J.SOILBIO.2005.01.011. (PMID: 10.1016/J.SOILBIO.2005.01.011)
Selvakumar, S., Manivasagan, R., & Chinnappan, K. (2013). Biodegradation and decolourization of textile dye wastewater using Ganoderma lucidum. 3 Biotech, 3(1), 71–79. https://doi.org/10.1007/s13205-012-0073-5. (PMID: 10.1007/s13205-012-0073-528324348)
Selvig, K., & Alspaugh, J. A. (2011). pH response pathways in fungi: Adapting to Host-derived and Environmental Signals. Mycobiology, 39(4), 249. https://doi.org/10.5941/MYCO.2011.39.4.249. (PMID: 10.5941/MYCO.2011.39.4.249227831123385132)
Shakhatreh, M. A. K., Al-Smadi, M. L., Khabour, O. F., Shuaibu, F. A., Hussein, E. I., & Alzoubi, K. H. (2016). Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Design, Development and Therapy, 10, 3653–3660. https://doi.org/10.2147/DDDT.S116312. (PMID: 10.2147/DDDT.S116312278770175108482)
Sharma, R., Talukdar, D., Bhardwaj, S., Jaglan, S., Kumar, R., Kumar, R., Akhtar, M. S., Beniwal, V., & Umar, A. (2020). Bioremediation potential of novel fungal species isolated from wastewater for the removal of lead from liquid medium. Environmental Technology and Innovation, 18, 100757. https://doi.org/10.1016/j.eti.2020.100757. (PMID: 10.1016/j.eti.2020.100757)
Sukmana, H., Bellahsen, N., Pantoja, F., & Hodur, C. (2021). Adsorption and coagulation in wastewater treatment - Review. Progress in Agricultural Engineering Sciences, 17(1), 49–68. https://doi.org/10.1556/446.2021.00029. (PMID: 10.1556/446.2021.00029)
Supramani, S., Rejab, N. A., Ilham, Z., Ahmad, R., Show, P. L., Ibrahim, M. F., & Wan-Mohtar, W. A. A. Q. I. (2023). Performance of biomass and exopolysaccharide production from the medicinal mushroom ganoderma lucidum in a new. Processes, 11(3), 670. (PMID: 10.3390/pr11030670)
Mohtar, W. A. A. Q. I. W., Ab, N., Latif, L. M., & Harvey, B. M. N. (2016). Production of exopolysaccharide by Ganoderma lucidum in a repeated-batch fermentation. Biocatalysis and Agricultural Biotechnology, 6, 91–101. https://doi.org/10.1016/j.bcab.2016.02.011. (PMID: 10.1016/j.bcab.2016.02.011)
Wingate, K. G., Stuthridge, T., & Mansfield, S. D. (2005). Colour remediation of pulp mill effluent using purified fungal cellobiose dehydrogenase: Reaction optimisation and mechanism of degradation. Biotechnology and Bioengineering, 90(1), 95–106. https://doi.org/10.1002/BIT.20419. (PMID: 10.1002/BIT.2041915726583)
Younis, A. M., Wu, F. S., & El Shikh, H. H. (2015). Antimicrobial activity of extracts of the oyster culinary medicinal mushroom Pleurotus ostreatus (higher basidiomycetes) and identification of a new antimicrobial compound. International Journal of Medicinal Mushrooms, 17(6), 579–590. https://doi.org/10.1615/INTJMEDMUSHROOMS.V17.I6.80. (PMID: 10.1615/INTJMEDMUSHROOMS.V17.I6.8026349515)
Zahuri, A. A., Fazly, M., Patah, A., Kamarulzaman, Y., Hashim, N. H., Thirumoorthi, T., Hanna, W., Wan, M., Hanafiah, Z. M., Amir, Z., Abd, W., & Qadr, A. (2023). Decolourisation of real industrial and synthetic textile dye wastewater using activated dolomite. Water, 15(6), 1172. (PMID: 10.3390/w15061172)
Ziane, S., Bessaha, F., Marouf-Khelifa, K., & Khelifa, A. (2018). Single and binary adsorption of reactive black 5 and Congo red on modified dolomite: Performance and mechanism. Journal of Molecular Liquids, 249, 1245–1253. https://doi.org/10.1016/J.MOLLIQ.2017.11.130. (PMID: 10.1016/J.MOLLIQ.2017.11.130)
Ziane, S., Marouf-Khelifa, K., Benmekki, H., Schott, J., & Khelifa, A. (2015). Removal of a reactive textile azo dye by dolomitic solids: Kinetic, equilibrium, thermodynamic, and FTIR studies. Desalination and Water Treatment, 56(3), 695–708. https://doi.org/10.1080/19443994.2014.941308. (PMID: 10.1080/19443994.2014.941308)
Zuleta-Correa, A., Merino-Restrepo, A., Jiménez-Correa, S., Hormaza-Anaguano, A., & Cardona-Gallo, S. A. (2016). Use of white rot fungi in the degradation of an azo dye from the textile industry. DYNA (Colombia), 83(198), 128–135. https://doi.org/10.15446/dyna.v83n198.52923. (PMID: 10.15446/dyna.v83n198.52923)
معلومات مُعتمدة: PV030-2023 UEM Sunrise
فهرسة مساهمة: Keywords: Activated dolomite; Batch bioreactor; Biosorption; Decolourisation; Ganoderma lucidum mycelial pellets; Physisorption; Textile wastewater; Wastewater treatment
تواريخ الأحداث: Date Created: 20240129 Latest Revision: 20240129
رمز التحديث: 20240130
DOI: 10.1007/s12033-023-01035-z
PMID: 38286973
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-0305
DOI:10.1007/s12033-023-01035-z