Navigating contradictions: Salmonella Typhimurium chemotactic responses to conflicting chemoeffector signals show parity with bacterial growth benefits.

التفاصيل البيبلوغرافية
العنوان: Navigating contradictions: Salmonella Typhimurium chemotactic responses to conflicting chemoeffector signals show parity with bacterial growth benefits.
المؤلفون: Gentry-Lear Z; University of Oregon, Department of Chemistry & Biochemistry, Eugene, OR, 97403., Franco K; Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164., Shavlik M; University of Oregon, Department of Chemistry & Biochemistry, Eugene, OR, 97403., Harms MJ; University of Oregon, Department of Chemistry & Biochemistry, Eugene, OR, 97403.; University of Oregon, Institute of Molecular Biology, Eugene, OR, 97403., Baylink A; Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, WA 99164.
المصدر: BioRxiv : the preprint server for biology [bioRxiv] 2024 Jan 21. Date of Electronic Publication: 2024 Jan 21.
نوع المنشور: Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101680187 Publication Model: Electronic Cited Medium: Internet NLM ISO Abbreviation: bioRxiv Subsets: PubMed not MEDLINE
مستخلص: Many bacteria that colonize the guts of animals use chemotaxis to direct swimming motility and select sites for colonization based on sources of effectors derived from the host, diet, and microbial competitors of the local environ. The complex ecosystem of the gastrointestinal tract contains mixtures of chemoattractants and chemorepellents, but it remains poorly understood how swimming bacteria navigate conflicting signals. The enteric pathogen Salmonella Typhimurium possesses Tsr, a chemoreceptor protein that directs both chemoattraction and chemorepulsion responses, which we employed as a model to study chemotaxis in the presence of conflicting effector stimuli. We investigated how S. Typhimurium responds to human fecal matter, an effector source in the enteric lumen that contains high concentrations of indole, a bacteriostatic chemorepellent produced by the native commensals of the microbiota, and also nutrients such as l-serine, a chemoattractant. The indole concentration in human feces is more than 12-fold the concentration required for half-maximal chemorepulsion, however, we find S. Typhimurium, and various clinical isolates of non-typhoidal S. enterica serovars, are strongly attracted to liquid fecal matter. We further investigated the chemotactic responses of S. Typhimurium to titrations of indole and l-serine and revealed that chemorepulsion to indole is overridden in the presence of excess l-serine. We capture the inversion of these two opposing taxis behaviors in a phenomenon we define as "chemohalation" in which the bacteria organize into a halo around the treatment source with an interior zone of avoidance, which represents a compromise between chemoattraction and chemorepulsion. Growth analyses reveal that the chemotactic responses to these opposing effectors align chemoattraction and chemorepulsion with the relative growth of the bacteria in culture. Hence, our study supports the view that evolution has finely tuned chemotaxis to assess environmental habitability by evaluating the tradeoffs in bacterial growth based on the local combination of effectors.
Competing Interests: Declaration of Interests A.B. owns Amethyst Antimicrobials, LLC.
References: FEMS Microbiol Rev. 2018 Jan 1;42(1):. (PMID: 29069367)
Curr Opin Biotechnol. 2017 Jun;45:8-14. (PMID: 28088095)
Cell Host Microbe. 2015 Aug 12;18(2):147-56. (PMID: 26269952)
Appl Environ Microbiol. 2019 Jul 1;85(14):. (PMID: 31053586)
PLoS One. 2018 Jan 17;13(1):e0190613. (PMID: 29342189)
Trends Microbiol. 2023 May;31(5):453-467. (PMID: 36411201)
Microbiol Mol Biol Rev. 2017 Oct 25;81(4):. (PMID: 29070658)
Cell Rep. 2022 Jul 19;40(3):111093. (PMID: 35858565)
Front Pharmacol. 2021 Dec 13;12:769501. (PMID: 34966278)
Gut Pathog. 2012 May 25;4(1):5. (PMID: 22632036)
Curr Opin Microbiol. 2018 Oct;45:22-29. (PMID: 29459288)
Infect Immun. 2007 Sep;75(9):4597-607. (PMID: 17591798)
Food Microbiol. 2013 May;34(1):164-73. (PMID: 23498194)
J Bacteriol. 1996 Dec;178(23):6882-7. (PMID: 8955310)
PLoS Biol. 2019 Aug 29;17(8):e3000395. (PMID: 31465435)
Annu Rev Biophys. 2018 May 20;47:595-616. (PMID: 29618219)
Cell Host Microbe. 2023 Mar 8;31(3):405-417.e5. (PMID: 36812913)
PNAS Nexus. 2022 May;1(2):. (PMID: 35719892)
Infect Immun. 2016 Jul 21;84(8):2299-306. (PMID: 27245413)
mBio. 2016 Jul 19;7(4):. (PMID: 27435462)
Cell Mol Life Sci. 2015 Feb;72(4):691-708. (PMID: 25374297)
J Clin Microbiol. 2013 Jul;51(7):2328-36. (PMID: 23678062)
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6114-6120. (PMID: 32123098)
FEMS Microbiol Rev. 2010 Jul;34(4):426-44. (PMID: 20070374)
PLoS Pathog. 2013;9(4):e1003267. (PMID: 23637594)
Curr Opin Microbiol. 2023 Oct;75:102358. (PMID: 37459734)
Microbiol Mol Biol Rev. 2020 Dec 23;85(1):. (PMID: 33361269)
J Gen Microbiol. 1991 Mar;137(3):601-6. (PMID: 2033380)
Genes Immun. 2021 Oct;22(5-6):255-267. (PMID: 33947987)
mBio. 2019 Jun 4;10(3):. (PMID: 31164470)
Appl Environ Microbiol. 2015 Dec;81(23):8093-7. (PMID: 26386049)
Front Immunol. 2022 Jun 17;13:903526. (PMID: 35784338)
PLoS Pathog. 2017 Jan 19;13(1):e1006118. (PMID: 28103315)
JCI Insight. 2018 Oct 18;3(20):. (PMID: 30333299)
Nat Rev Microbiol. 2022 Aug;20(8):491-504. (PMID: 35292761)
Commun Biol. 2020 Jan 10;3(1):24. (PMID: 31925330)
mBio. 2018 Oct 9;9(5):. (PMID: 30301859)
mBio. 2016 Oct 11;7(5):. (PMID: 27729513)
Nat Microbiol. 2020 Jan;5(1):116-125. (PMID: 31686025)
معلومات مُعتمدة: K99 AI148587 United States AI NIAID NIH HHS; R00 AI148587 United States AI NIAID NIH HHS
تواريخ الأحداث: Date Created: 20240131 Latest Revision: 20240207
رمز التحديث: 20240207
مُعرف محوري في PubMed: PMC10827161
DOI: 10.1101/2024.01.18.576330
PMID: 38293242
قاعدة البيانات: MEDLINE
الوصف
DOI:10.1101/2024.01.18.576330