دورية أكاديمية

SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome.

التفاصيل البيبلوغرافية
العنوان: SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome.
المؤلفون: Stamenkovic V; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA., Lautz JD; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA., Harsh FM; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA., Smith SEP; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA. seps@uw.edu.; Department of Pediatrics, University of Washington, Seattle, WA, USA. seps@uw.edu.; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA. seps@uw.edu.
المصدر: Molecular psychiatry [Mol Psychiatry] 2024 May; Vol. 29 (5), pp. 1392-1405. Date of Electronic Publication: 2024 Jan 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Specialist Journals Country of Publication: England NLM ID: 9607835 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5578 (Electronic) Linking ISSN: 13594184 NLM ISO Abbreviation: Mol Psychiatry Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : Houndmills, Basingstoke, UK : Nature Publishing Group Specialist Journals
Original Publication: Houndmills, Hampshire, UK ; New York, NY : Stockton Press, c1996-
مواضيع طبية MeSH: Fragile X Syndrome*/metabolism , Fragile X Syndrome*/drug therapy , Fragile X Mental Retardation Protein*/metabolism , Fragile X Mental Retardation Protein*/genetics , Disease Models, Animal* , src-Family Kinases*/metabolism , Benzodioxoles*/pharmacology , Proto-Oncogene Proteins c-fyn*/metabolism , Neurons*/metabolism , Neurons*/drug effects, Animals ; Mice ; Male ; Receptors, Metabotropic Glutamate/metabolism ; Signal Transduction/drug effects ; Phenotype ; Synapses/metabolism ; Synapses/drug effects ; Protein Interaction Maps/drug effects ; Receptors, N-Methyl-D-Aspartate/metabolism ; Mice, Inbred C57BL ; Mice, Knockout ; Cerebral Cortex/metabolism ; Cerebral Cortex/drug effects ; Quinazolines
مستخلص: Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1 -/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1 -/y animals. We tested whether targeting SFKs in FMR1 -/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1 -/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Choquet D, Triller A. The dynamic synapse. Neuron. 2013;80:691–703. (PMID: 2418302010.1016/j.neuron.2013.10.013)
Chen X, Wu X, Wu H, Zhang M. Phase separation at the synapse. Nat Neurosci. 2020;23:301–10. (PMID: 3201553910.1038/s41593-019-0579-9)
Coba MP, Pocklington AJ, Collins MO, Kopanitsa MV, Uren RT, Swamy S, et al. Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal. 2009;2:ra19. (PMID: 19401593328089710.1126/scisignal.2000102)
Pocklington AJ, Cumiskey M, Armstrong JD, Grant SGN. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol. 2006;2:2006.0023. (PMID: 16738568168147410.1038/msb4100041)
Lautz JD, Brown EA, Williams VanSchoiack AA, Smith SEP. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540–59. (PMID: 29804286615082310.1111/jnc.14466)
Heavner WE, Lautz JD, Speed HE, Gniffke EP, Immendorf KB, Welsh JP, et al. Remodeling of the Homer-Shank interactome mediates homeostatic plasticity. Sci Signal. 2021;14:eabd7325. (PMID: 33947797830086010.1126/scisignal.abd7325)
Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep. 2021;37:110076. (PMID: 34852231872236110.1016/j.celrep.2021.110076)
Schrum AG, Gil D. Robustness and specificity in signal transduction via physiologic protein interaction networks. Clin Exp Pharm. 2012;2:S3.001.
Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, et al. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol. 2019;4:eaal2201. (PMID: 30770409725267110.1126/sciimmunol.aal2201)
Brown EA, Lautz JD, Davis TR, Gniffke EP, VanSchoiack AAW, Neier SC, et al. Clustering the autisms using glutamate synapse protein interaction networks from cortical and hippocampal tissue of seven mouse models. Mol Autism. 2018;9:48. (PMID: 30237867613913910.1186/s13229-018-0229-1)
Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. Annu Rev Pathol. 2015;10:111–44. (PMID: 2562165910.1146/annurev-pathol-012414-040405)
Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet. 2022;54:1320–31. (PMID: 35982160965301310.1038/s41588-022-01104-0)
Lautz J, Zhu Z, Speed HE, Smith SEP, Welsh JP. Shank3 mutations impair electrical synapse scaffolding and transmission in mouse brain. BioRxiv. 2021:2021.03.25.437056.
Falkovich R, Danielson EW, Perez de Arce K, Wamhoff E-C, Strother J, Lapteva AP, et al. A synaptic molecular dependency network in knockdown of autism- and schizophrenia-associated genes revealed by multiplexed imaging. Cell Rep. 2023;42:112430. (PMID: 370994251025967810.1016/j.celrep.2023.112430)
Heavner WE, Smith SEP. Resolving the synaptic versus developmental dichotomy of autism risk genes. Trends Neurosci. 2020;43:227–41. (PMID: 32209454710127610.1016/j.tins.2020.01.009)
Mullins C, Fishell G, Tsien RW. Unifying views of autism spectrum disorders: a consideration of autoregulatory feedback loops. Neuron. 2016;89:1131–56. (PMID: 26985722575724410.1016/j.neuron.2016.02.017)
Darnell JC, Van Driesche SJ, Zhang C, Hung KYS, Mele A, Fraser CE, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–61. (PMID: 21784246323242510.1016/j.cell.2011.06.013)
Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron. 2008;60:201–14. (PMID: 18957214369199510.1016/j.neuron.2008.10.004)
Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DB, Moine H, Kooy RF, et al. Fragile X syndrome. Nat Rev Dis Prim. 2017;3:1–19.
Utami KH, Yusof NABM, Kwa JE, Peteri U-K, Castrén ML, Pouladi MA. Elevated de novo protein synthesis in FMRP-deficient human neurons and its correction by metformin treatment. Mol Autism. 2020;11:41. (PMID: 32460900725167110.1186/s13229-020-00350-5)
Osterweil EK, Krueger DD, Reinhold K, Bear MF. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J Neurosci. 2010;30:15616–27. (PMID: 21084617340043010.1523/JNEUROSCI.3888-10.2010)
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci. 2015;16:595–605. (PMID: 26350240468889610.1038/nrn4001)
Louros SR, Seo SS, Maio B, Martinez-Gonzalez C, Gonzalez-Lozano MA, Muscas M, et al. Excessive proteostasis contributes to pathology in fragile X syndrome. Neuron. 2023;111:508–25.e7. (PMID: 3649586910.1016/j.neuron.2022.11.012)
Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex N. Y N. 1991. 2000;10:1038–44.
Booker SA, Domanski APF, Dando OR, Jackson AD, Isaac JTR, Hardingham GE, et al. Altered dendritic spine function and integration in a mouse model of fragile X syndrome. Nat Commun. 2019;10:4813. (PMID: 31645626681154910.1038/s41467-019-11891-6)
Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004;27:370–7. (PMID: 1521973510.1016/j.tins.2004.04.009)
Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci. 2002;99:7746–50. (PMID: 1203235412434010.1073/pnas.122205699)
Toft AKH, Lundbye CJ, Banke TG. Dysregulated NMDA-receptor signaling inhibits long-term depression in a mouse model of fragile X syndrome. J Neurosci. 2016;36:9817–27. (PMID: 27656021670556510.1523/JNEUROSCI.3038-15.2016)
Ethridge LE, White SP, Mosconi MW, Wang J, Pedapati EV, Erickson CA, et al. Neural synchronization deficits linked to cortical hyper-excitability and auditory hypersensitivity in fragile X syndrome. Mol Autism. 2017;8:22. (PMID: 28596820546345910.1186/s13229-017-0140-1)
Wang J, Ethridge LE, Mosconi MW, White SP, Binder DK, Pedapati EV, et al. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J Neurodev Disord. 2017;9:11. (PMID: 28316753535111110.1186/s11689-017-9191-z)
Lovelace JW, Ethell IM, Binder DK, Razak KA. Translation-relevant EEG phenotypes in a mouse model of fragile X syndrome. Neurobiol Dis. 2018;115:39–48. (PMID: 29605426596980610.1016/j.nbd.2018.03.012)
Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, Klann E, et al. Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci J Soc Neurosci. 2010;30:694–702. (PMID: 10.1523/JNEUROSCI.3696-09.2010)
Brown EA, Neier SC, Neuhauser C, Schrum AG, Smith SEP. Quantification of protein interaction network dynamics using multiplexed co-immunoprecipitation. JoVE J Vis Exp. 2019:e60029.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559. (PMID: 10.1186/1471-2105-9-559)
Guo W, Ceolin L, Collins KA, Perroy J, Huber KM. Elevated CaMKIIα and hyperphosphorylation of homer mediate circuit dysfunction in a fragile X syndrome mouse model. Cell Rep. 2015;13:2297–311. (PMID: 26670047468500810.1016/j.celrep.2015.11.013)
Smith SEP, Neier SC, Reed BK, Davis TR, Sinnwell JP, Eckel-Passow JE, et al. Multiplex matrix network analysis of protein complexes in the human TCR signalosome. Sci Signal. 2016;9:rs7. (PMID: 27485017533638010.1126/scisignal.aad7279)
Stoppel DC, McCamphill PK, Senter RK, Heynen AJ, Bear MF. mGluR5 negative modulators for fragile X: treatment resistance and persistence. Front Psychiatry. 2021;12.
Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, et al. Metabotropic glutamate receptor 5 is a coreceptor for alzheimer Aβ oligomer bound to cellular prion protein. Neuron. 2013;79:887–902. (PMID: 24012003376801810.1016/j.neuron.2013.06.036)
Mao L-M, Wang JQ. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo. J Neurosci Res. 2016;94:329–38. (PMID: 26777117474455110.1002/jnr.23713)
Trepanier CH, Jackson MF, MacDonald JF. Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J. 2012;279:12–9. (PMID: 2198532810.1111/j.1742-4658.2011.08391.x)
Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src inhibition attenuates neuroinflammation and protects dopaminergic neurons in Parkinson’s disease models. Front Neurosci. 2020;14.
Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953–71. (PMID: 25707991444759810.1002/ana.24394)
Smith LM, Zhu R, Strittmatter SM. Disease-modifying benefit of Fyn blockade persists after washout in mouse Alzheimer’s model. Neuropharmacology. 2018;130:54–61. (PMID: 2919175410.1016/j.neuropharm.2017.11.042)
Tang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96. (PMID: 32611392732955310.1186/s40478-020-00976-9)
Sharma S, Carlson S, Puttachary S, Sarkar S, Showman L, Putra M, et al. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy. Neurobiol Dis. 2018;110:102–21. (PMID: 2919762010.1016/j.nbd.2017.11.008)
Luo X-M, Zhao J, Wu W-Y, Fu J, Li Z-Y, Zhang M, et al. Post-status epilepticus treatment with the Fyn inhibitor, saracatinib, improves cognitive function in mice. BMC Neurosci. 2021;22:2. (PMID: 33451301781125510.1186/s12868-020-00606-z)
Gage M, Putra M, Wachter L, Dishman K, Gard M, Gomez-Estrada C, et al. Saracatinib, a Src tyrosine kinase inhibitor, as a disease modifier in the rat DFP model: sex differences, neurobehavior, gliosis, neurodegeneration, and nitro-oxidative stress. Antioxid Basel Switz. 2021;11:61. (PMID: 10.3390/antiox11010061)
Gage M, Putra M, Gomez-Estrada C, Golden M, Wachter L, Gard M, et al. Differential impact of severity and duration of status epilepticus, medical countermeasures, and a disease-modifier, saracatinib, on brain regions in the rat diisopropylfluorophosphate model. Front Cell Neurosci. 2021;15:772868. (PMID: 34720886855546710.3389/fncel.2021.772868)
van Dyck CH, Nygaard HB, Chen K, Donohue MC, Raman R, Rissman RA, et al. Effect of AZD0530 on cerebral metabolic decline in Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2019;76:1219–29. (PMID: 31329216664697910.1001/jamaneurol.2019.2050)
Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275–7. (PMID: 1930540610.1038/nmeth.1314)
Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. Curr Protoc Neurosci Editor Board Jacqueline N. Crawley Al. 2011;CHAPTER 8:Unit-8.26.
Yan QJ, Rammal M, Tranfaglia M, Bauchwitz RP. Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology. 2005;49:1053–66. (PMID: 1605417410.1016/j.neuropharm.2005.06.004)
Dölen G, Osterweil E, Rao BSS, Smith GB, Auerbach BD, Chattarji S, et al. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–62. (PMID: 18093519219926810.1016/j.neuron.2007.12.001)
Dine E, Gil AA, Uribe G, Brangwynne CP, Toettcher JE. Protein phase separation provides long-term memory of transient spatial stimuli. Cell Syst. 2018;6:655–63.e5. (PMID: 29859829602375410.1016/j.cels.2018.05.002)
Zeng M, Chen X, Guan D, Xu J, Wu H, Tong P, et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell. 2018;174:1172–87.e16. (PMID: 3007871210.1016/j.cell.2018.06.047)
Sawicka K, Pyronneau A, Chao M, Bennett MVL, Zukin RS. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice. Proc Natl Acad Sci USA. 2016;113:E6290–97. (PMID: 27663742506831910.1073/pnas.1610812113)
Wang X, Snape M, Klann E, Stone JG, Singh A, Petersen RB, et al. Activation of the extracellular signal-regulated kinase pathway contributes to the behavioral deficit of fragile x-syndrome. J Neurochem. 2012;121:672–9. (PMID: 2239390010.1111/j.1471-4159.2012.07722.x)
Ronesi JA, Collins KA, Hays SA, Tsai N-P, Guo W, Birnbaum SG, et al. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci. 2012;15:431–40. (PMID: 22267161328840210.1038/nn.3033)
Aloisi E, Le Corf K, Dupuis J, Zhang P, Ginger M, Labrousse V, et al. Altered surface mGluR5 dynamics provoke synaptic NMDAR dysfunction and cognitive defects in Fmr1 knockout mice. Nat Commun. 2017;8:1103. (PMID: 29062097565365310.1038/s41467-017-01191-2)
Luján R, Nusser Z, Roberts JDB, Shigemoto R, Somogyi P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur J Neurosci. 1996;8:1488–1500. (PMID: 875895610.1111/j.1460-9568.1996.tb01611.x)
Goncalves J, Bartol TM, Camus C, Levet F, Menegolla AP, Sejnowski TJ, et al. Nanoscale co-organization and coactivation of AMPAR, NMDAR, and mGluR at excitatory synapses. Proc Natl Acad Sci. 2020;117:14503–11. (PMID: 32513712732197710.1073/pnas.1922563117)
Scheefhals N, Westra M, MacGillavry HD. mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function. Nat Commun. 2023;14:244. (PMID: 36646691984266810.1038/s41467-022-35680-w)
Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, et al. Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. J Cell Biol. 2012;198:251–63. (PMID: 22801779341041710.1083/jcb.201110101)
Bertaso F, Roussignol G, Worley P, Bockaert J, Fagni L, Ango F. Homer1a-dependent crosstalk between NMDA and metabotropic glutamate receptors in mouse neurons. PLOS ONE. 2010;5:e9755. (PMID: 20305784284119810.1371/journal.pone.0009755)
Grant SG, O’Dell TJ, Karl KA, Stein PL, Soriano P, Kandel ER. Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science. 1992;258:1903–10. (PMID: 136168510.1126/science.1361685)
Lisman J, Schulman H, Cline H. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci. 2002;3:175–90. (PMID: 1199475010.1038/nrn753)
Kojima N, Wang J, Mansuy IM, Grant SGN, Mayford M, Kandel ER. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc Natl Acad Sci. 1997;94:4761–5. (PMID: 91140652079810.1073/pnas.94.9.4761)
Kojima N, Sakamoto T, Endo S, Niki H. Impairment of conditioned freezing to tone, but not to context, in Fyn-transgenic mice: relationship to NMDA receptor subunit 2B function. Eur J Neurosci. 2005;21:1359–69. (PMID: 1581394510.1111/j.1460-9568.2005.03955.x)
Morisot N, Berger AL, Phamluong K, Cross A, Ron D. The Fyn kinase inhibitor, AZD0530, suppresses mouse alcohol self-administration and seeking. Addict Biol. 2019;24:1227–34. (PMID: 3053692310.1111/adb.12699)
Babus LW, Little EM, Keenoy KE, Minami SS, Chen E, Song JM, et al. Decreased dendritic spine density and abnormal spine morphology in Fyn knockout mice. Brain Res. 2011;1415:96–102. (PMID: 21872217360720210.1016/j.brainres.2011.07.059)
Huerta PT, Scearce KA, Farris SM, Empson RM, Prusky GT. Preservation of spatial learning in fyn tyrosine kinase knockout mice. Neuroreport. 1996;7:1685–9. (PMID: 890478210.1097/00001756-199607080-00032)
Jin D-Z, Mao L-M, Wang JQ. An essential role of Fyn in the modulation of metabotropic glutamate receptor 1 in neurons. ENeuro. 2017;4:ENEURO.0096–17.2017. (PMID: 2894820910.1523/ENEURO.0096-17.2017)
Hayashi T, Huganir RL. Tyrosine phosphorylation and regulation of the AMPA receptor by Src family tyrosine kinases. J Neurosci. 2004;24:6152–60. (PMID: 15240807672965810.1523/JNEUROSCI.0799-04.2004)
Kaye S, Aamdal S, Jones R, Freyer G, Pujade-Lauraine E, de Vries EGE, et al. Phase I study of saracatinib (AZD0530) in combination with paclitaxel and/or carboplatin in patients with solid tumours. Br J Cancer. 2012;106:1728–34. (PMID: 22531637336412810.1038/bjc.2012.158)
Baselga J, Cervantes A, Martinelli E, Chirivella I, Hoekman K, Hurwitz HI, et al. Phase I safety, pharmacokinetics, and inhibition of Src activity study of saracatinib in patients with solid tumors. Clin Cancer Res. 2010;16:4876–83. (PMID: 2080529910.1158/1078-0432.CCR-10-0748)
Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron. 2012;74:49–56. (PMID: 22500629882259710.1016/j.neuron.2012.03.009)
Osterweil EK, Chuang S-C, Chubykin AA, Sidorov M, Bianchi R, Wong RKS, et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron. 2013;77:243–50. (PMID: 23352161359744410.1016/j.neuron.2012.01.034)
Gantois I, Khoutorsky A, Popic J, Aguilar-Valles A, Freemantle E, Cao R, et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat Med. 2017;23:674–7. (PMID: 2850472510.1038/nm.4335)
Asiminas A, Jackson AD, Louros SR, Till SM, Spano T, Dando O, et al. Sustained correction of associative learning deficits after brief, early treatment in a rat model of fragile X syndrome. Sci Transl Med. 2019;11:eaao0498. (PMID: 31142675816268310.1126/scitranslmed.aao0498)
Saré RM, Song A, Loutaev I, Cook A, Maita I, Lemons A, et al. Negative effects of chronic rapamycin treatment on behavior in a mouse model of fragile X syndrome. Front Mol Neurosci. 2018;10.
McCamphill PK, Stoppel LJ, Senter RK, Lewis MC, Heynen AJ, Stoppel DC, et al. Selective inhibition of glycogen synthase kinase 3α corrects pathophysiology in a mouse model of fragile X syndrome. Sci Transl Med. 2020;12:eaam8572. (PMID: 32434848809571910.1126/scitranslmed.aam8572)
Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian fragile X consortium. Cell. 1994;78:23–33.
Kooy RF, D’Hooge R, Reyniers E, Bakker CE, Nagels G, De Boulle K, et al. Transgenic mouse model for the fragile X syndrome. Am J Med Genet. 1996;64:241–5. (PMID: 884405610.1002/(SICI)1096-8628(19960809)64:2<241::AID-AJMG1>3.0.CO;2-X)
McNaughton CH, Moon J, Strawderman MS, Maclean KN, Evans J, Strupp BJ. Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav Neurosci. 2008;122:293–300. (PMID: 1841016910.1037/0735-7044.122.2.293)
Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R. Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav. 2005;4:420–30. (PMID: 1617638810.1111/j.1601-183X.2005.00123.x)
Qin M, Huang T, Kader M, Krych L, Xia Z, Burlin T, et al. R-Baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol. 2015;18:pyv034. (PMID: 25820841457651610.1093/ijnp/pyv034)
Liu Z-H, Chuang D-M, Smith CB. Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome. Int J Neuropsychopharmacol. 2011;14:618–30. (PMID: 2049762410.1017/S1461145710000520)
Liu Z-H, Smith CB. Dissociation of social and nonsocial anxiety in a mouse model of fragile X syndrome. Neurosci Lett. 2009;454:62–6. (PMID: 19429055309237410.1016/j.neulet.2009.02.066)
Mineur YS, Huynh LX, Crusio WE. Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res. 2006;168:172–5. (PMID: 1634365310.1016/j.bbr.2005.11.004)
Wu C-H, Tatavarty V, Jean Beltran PM, Guerrero AA, Keshishian H, Krug K, et al. A bidirectional switch in the Shank3 phosphorylation state biases synapses toward up- or downscaling. ELife. 2022;11:e74277. (PMID: 35471151908489310.7554/eLife.74277)
Jeong J, Li Y, Roche KW. CaMKII phosphorylation regulates synaptic enrichment of Shank3. ENeuro. 2021;8:ENEURO.0481–20.2021. (PMID: 3356846010.1523/ENEURO.0481-20.2021)
Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, et al. Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J Vis Exp JoVE. 2018. https://doi.org/10.3791/53825 .
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat Oxf Engl. 2007;8:118–27.
المشرفين على المادة: 139135-51-6 (Fragile X Mental Retardation Protein)
0 (Fmr1 protein, mouse)
EC 2.7.10.2 (src-Family Kinases)
9KD24QGH76 (saracatinib)
0 (Benzodioxoles)
EC 2.7.10.2 (Proto-Oncogene Proteins c-fyn)
0 (Receptors, Metabotropic Glutamate)
EC 2.7.10.2 (Fyn protein, mouse)
0 (Receptors, N-Methyl-D-Aspartate)
0 (Quinazolines)
تواريخ الأحداث: Date Created: 20240131 Date Completed: 20240620 Latest Revision: 20240620
رمز التحديث: 20240621
DOI: 10.1038/s41380-024-02418-7
PMID: 38297084
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5578
DOI:10.1038/s41380-024-02418-7