دورية أكاديمية

7-Dehydrocholesterol is an endogenous suppressor of ferroptosis.

التفاصيل البيبلوغرافية
العنوان: 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis.
المؤلفون: Freitas FP; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany., Alborzinia H; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany., Dos Santos AF; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany., Nepachalovich P; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany., Pedrera L; Institute of Genetics, CECAD, University of Cologne, Cologne, Germany., Zilka O; Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada., Inague A; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.; Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil., Klein C; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany., Aroua N; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany., Kaushal K; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany., Kast B; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany., Lorenz SM; Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany., Kunz V; Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany., Nehring H; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany., Xavier da Silva TN; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany., Chen Z; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany., Atici S; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany., Doll SG; Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany., Schaefer EL; Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada., Ekpo I; Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada., Schmitz W; Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany., Horling A; Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany., Imming P; Institute of Pharmacy, Martin Luther University Halle Wittenberg, Halle, Germany., Miyamoto S; Instituto de Química, Universidade de Sao Paulo, Sao Paulo, Brazil., Wehman AM; Department of Biological Sciences, University of Denver, Denver, CO, USA., Genaro-Mattos TC; Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA., Mirnics K; Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA., Kumar L; Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India., Klein-Seetharaman J; Department of Physics, Colorado School of Mines, Golden, CO, USA.; School of Molecular Sciences, Arizona State University, Phoenix, AZ, USA., Meierjohann S; Department of Pathology, University of Würzburg, Würzburg, Germany., Weigand I; Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany., Kroiss M; Medizinische Klinik und Poliklinik IV, Ludwig Maximillian University, Munich, Germany., Bornkamm GW; Institute of Experimental Cancer Research, University Hospital Ulm, Ulm, Germany., Gomes F; Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil., Netto LES; Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil., Sathian MB; Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany., Konrad DB; Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany., Covey DF; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.; Taylor Family Institute for Innovative Psychiatric Research, Washington University, St. Louis, MO, USA., Michalke B; Research Unit Analytical BioGeoChemistry, Helmholtz Center München (HMGU), Neuherberg, Germany., Bommert K; Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany., Bargou RC; Comprehensive Cancer Center Mainfranken, Universitätsklinikum Würzburg, Würzburg, Germany., Garcia-Saez A; Institute of Genetics, CECAD, University of Cologne, Cologne, Germany., Pratt DA; Department of Chemistry & Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada., Fedorova M; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany., Trumpp A; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.; German Cancer Consortium (DKTK), Heidelberg, Germany., Conrad M; Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany., Friedmann Angeli JP; Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany. pedro.angeli@uni-wuerzburg.de.
المصدر: Nature [Nature] 2024 Feb; Vol. 626 (7998), pp. 401-410. Date of Electronic Publication: 2024 Jan 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Burkitt Lymphoma*/metabolism , Burkitt Lymphoma*/pathology , Dehydrocholesterols*/metabolism , Ferroptosis* , Neuroblastoma*/metabolism , Neuroblastoma*/pathology, Animals ; Humans ; Cell Survival ; Lipid Peroxidation ; Neoplasm Transplantation ; Oxidation-Reduction ; Phenotype ; Reproducibility of Results
مستخلص: Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation 1,2 . Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation 3 , we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions and therapeutic applications. Cell 185, 2401–2421 (2022). (PMID: 35803244927302210.1016/j.cell.2022.06.003)
Dos Santos, A. F., Fazeli, G., Xavier da Silva, T. N. & Friedmann Angeli, J. P. Ferroptosis: mechanisms and implications for cancer development and therapy response. Trends Cell Biol. 33, 1062–1076 (2023). (PMID: 3723092410.1016/j.tcb.2023.04.005)
Korade, Z., Xu, L., Shelton, R. & Porter, N. A. Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith–Lemli–Opitz syndrome. J. Lipid Res. 51, 3259–3269 (2010). (PMID: 20702862295256610.1194/jlr.M009365)
Yin, H., Xu, L. & Porter, N. A. Free radical lipid peroxidation: mechanisms and analysis. Chem. Rev. 111, 5944–5972 (2011). (PMID: 2186145010.1021/cr200084z)
Angeli, J. P. F., Shah, R., Pratt, D. A. & Conrad, M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharmacol. Sci. 38, 489–498 (2017). (PMID: 2836376410.1016/j.tips.2017.02.005)
Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008). (PMID: 1876202410.1016/j.cmet.2008.07.005)
Yant, L. J. et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 34, 496–502 (2003). (PMID: 1256607510.1016/S0891-5849(02)01360-6)
Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014). (PMID: 24439385407641410.1016/j.cell.2013.12.010)
Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014). (PMID: 2540268310.1038/ncb3064)
Ursini, F., Maiorino, M., Valente, M., Ferri, L. & Gregolin, C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim. Biophys. Acta 710, 197–211 (1982). (PMID: 706635810.1016/0005-2760(82)90150-3)
Nishida Xavier da Silva, T., Friedmann Angeli, J. P. & Ingold, I. GPX4: old lessons, new features. Biochem. Soc. Trans. 50, 1205–1213 (2022). (PMID: 3575826810.1042/BST20220682)
Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017). (PMID: 2784207010.1038/nchembio.2239)
Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019). (PMID: 30962421645388610.1038/s41467-019-09277-9)
Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017). (PMID: 2784206610.1038/nchembio.2238)
Shah, R., Shchepinov, M. S. & Pratt, D. A. Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent. Sci. 4, 387–396 (2018). (PMID: 29632885587947210.1021/acscentsci.7b00589)
Pedrera, L. et al. Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 28, 1644–1657 (2021). (PMID: 3333528710.1038/s41418-020-00691-x)
Riegman, M. et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat. Cell Biol. 22, 1042–1048 (2020). (PMID: 32868903764427610.1038/s41556-020-0565-1)
Kandutsch, A. A. & Russell, A. E. Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol. J. Biol. Chem. 235, 2256–2261 (1960). (PMID: 1440428410.1016/S0021-9258(18)64608-3)
Xu, L., Davis, T. A. & Porter, N. A. Rate constants for peroxidation of polyunsaturated fatty acids and sterols in solution and in liposomes. J. Am. Chem. Soc. 131, 13037–13044 (2009). (PMID: 1970584710.1021/ja9029076)
Li, Y. et al. 7-Dehydrocholesterol dictates ferroptosis sensitivity. Nature, https://doi.org/10.1038/s41586-023-06983-9 (2024).
Tzelepis, K. et al. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17, 1193–1205 (2016). (PMID: 27760321508140510.1016/j.celrep.2016.09.079)
Yuan, H., Li, X., Zhang, X., Kang, R. & Tang, D. Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem. Biophys. Res. Commun. 478, 1338–1343 (2016). (PMID: 2756572610.1016/j.bbrc.2016.08.124)
Dixon, S. J. et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem. Biol. 10, 1604–1609 (2015). (PMID: 25965523450942010.1021/acschembio.5b00245)
Zou, Y. et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585, 603–608 (2020). (PMID: 32939090805186410.1038/s41586-020-2732-8)
Xu, L., Korade, Z. & Porter, N. A. Oxysterols from free radical chain oxidation of 7-dehydrocholesterol: product and mechanistic studies. J. Am. Chem. Soc. 132, 2222–2232 (2010). (PMID: 20121089283932310.1021/ja9080265)
Conrad, M. & Pratt, D. A. The chemical basis of ferroptosis. Nat. Chem. Biol. 15, 1137–1147 (2019). (PMID: 3174083410.1038/s41589-019-0408-1)
Garcia-Bermudez, J. et al. Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death. Nature 567, 118–122 (2019). (PMID: 30760928640529710.1038/s41586-019-0945-5)
Westover, E. J. & Covey, D. F. The enantiomer of cholesterol. J. Membr. Biol. 202, 61–72 (2004). (PMID: 1570237010.1007/s00232-004-0714-7)
Johnston, E. J., Moses, T. & Rosser, S. J. The wide-ranging phenotypes of ergosterol biosynthesis mutants and implications for microbial cell factories. Yeast 37, 27–44 (2020). (PMID: 3180096810.1002/yea.3452)
Shah, R., Farmer, L. A., Zilka, O., Van Kessel, A. T. M. & Pratt, D. A. Beyond DPPH: use of fluorescence-enabled inhibited autoxidation to predict oxidative cell death rescue. Cell Chem. Biol. 26, 1594–1607 (2019). (PMID: 3156453310.1016/j.chembiol.2019.09.007)
Zhang, X., Barraza, K. M. & Beauchamp, J. L. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air–water interface. Proc. Natl Acad. Sci. USA 115, 3255–3260 (2018). (PMID: 29507237587970910.1073/pnas.1722323115)
McLean, L. R. & Hagaman, K. A. Effect of lipid physical state on the rate of peroxidation of liposomes. Free Radic. Biol. Med. 12, 113–119 (1992). (PMID: 155961610.1016/0891-5849(92)90004-Z)
Do, Q. et al. Development and application of a peroxyl radical clock approach for measuring both hydrogen-atom transfer and peroxyl radical addition rate constants. J. Org. Chem. 86, 153–168 (2021). (PMID: 3326958510.1021/acs.joc.0c01920)
Bacellar, I. O. L. et al. Photosensitized membrane permeabilization requires contact-dependent reactions between photosensitizer and lipids. J. Am. Chem. Soc. 140, 9606–9615 (2018). (PMID: 2998980910.1021/jacs.8b05014)
Friedmann-Angeli, J. P., Miyamoto, S. & Schulze, A. Ferroptosis: the greasy side of cell death. Chem. Res. Toxicol. 32, 362–369 (2019). (PMID: 3065329010.1021/acs.chemrestox.8b00349)
Schmitz, R. et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490, 116–120 (2012). (PMID: 22885699360986710.1038/nature11378)
Bonfiglio, F. et al. Inherited rare variants in homologous recombination and neurodevelopmental genes are associated with increased risk of neuroblastoma. EBioMedicine 87, 104395 (2023). (PMID: 3649372510.1016/j.ebiom.2022.104395)
Eagle, K. et al. An oncogenic enhancer encodes selective selenium dependency in AML. Cell Stem Cell 29, 386–399 (2022). (PMID: 35108519890319910.1016/j.stem.2022.01.003)
Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020). (PMID: 32814895748446810.1038/s41586-020-2623-z)
Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).
Xu, L. & Porter, N. A. Reactivities and products of free radical oxidation of cholestadienols. J. Am. Chem. Soc. 136, 5443–5450 (2014). (PMID: 24625033400427810.1021/ja5011674)
Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Cent. Sci. 3, 232–243 (2017). (PMID: 28386601536445410.1021/acscentsci.7b00028)
Lu, Y. et al. MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 12, 511 (2021). (PMID: 34011924813446610.1038/s41419-021-03790-w)
Floros, K. V. et al. MYCN-amplified neuroblastoma is addicted to iron and vulnerable to inhibition of the system Xc-/glutathione axis. Cancer Res. 81, 1896–1908 (2021). (PMID: 33483374928161210.1158/0008-5472.CAN-20-1641)
Alborzinia, H. et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat. Cancer 3, 471–485 (2022). (PMID: 35484422905059510.1038/s43018-022-00355-4)
Alborzinia, H. et al. LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol. Med. 15, e18014 (2023). (PMID: 374358591040506310.15252/emmm.202318014)
Kim, H. Y. et al. Inhibitors of 7-dehydrocholesterol reductase: screening of a collection of pharmacologically active compounds in Neuro2a cells. Chem. Res. Toxicol. 29, 892–900 (2016). (PMID: 27097157486876910.1021/acs.chemrestox.6b00054)
Hall, P. et al. Aripiprazole and trazodone cause elevations of 7-dehydrocholesterol in the absence of Smith–Lemli–Opitz syndrome. Mol. Genet. Metab. 110, 176–178 (2013). (PMID: 2362846010.1016/j.ymgme.2013.04.004)
Francis, K. R. et al. Modeling Smith–Lemli–Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/beta-catenin defects in neuronal cholesterol synthesis phenotypes. Nat. Med. 22, 388–396 (2016). (PMID: 26998835482316310.1038/nm.4067)
Sever, N. et al. Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols. Proc. Natl Acad. Sci. USA 113, 5904–5909 (2016). (PMID: 27162362488940410.1073/pnas.1604984113)
المشرفين على المادة: BK1IU07GKF (7-dehydrocholesterol)
EC 1.3.1.21 (7-dehydrocholesterol reductase)
0 (Dehydrocholesterols)
3170-83-0 (perhydroxyl radical)
تواريخ الأحداث: Date Created: 20240131 Date Completed: 20240213 Latest Revision: 20240213
رمز التحديث: 20240213
DOI: 10.1038/s41586-023-06878-9
PMID: 38297129
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06878-9