دورية أكاديمية

Direct prediction of intrinsically disordered protein conformational properties from sequence.

التفاصيل البيبلوغرافية
العنوان: Direct prediction of intrinsically disordered protein conformational properties from sequence.
المؤلفون: Lotthammer JM; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA., Ginell GM; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA., Griffith D; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA., Emenecker RJ; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA., Holehouse AS; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA. alex.holehouse@wustl.edu.; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, USA. alex.holehouse@wustl.edu.
المصدر: Nature methods [Nat Methods] 2024 Mar; Vol. 21 (3), pp. 465-476. Date of Electronic Publication: 2024 Jan 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101215604 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1548-7105 (Electronic) Linking ISSN: 15487091 NLM ISO Abbreviation: Nat Methods Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, c2004-
مواضيع طبية MeSH: Intrinsically Disordered Proteins*/chemistry, Protein Conformation ; Polymers
مستخلص: Intrinsically disordered regions (IDRs) are ubiquitous across all domains of life and play a range of functional roles. While folded domains are generally well described by a stable three-dimensional structure, IDRs exist in a collection of interconverting states known as an ensemble. This structural heterogeneity means that IDRs are largely absent from the Protein Data Bank, contributing to a lack of computational approaches to predict ensemble conformational properties from sequence. Here we combine rational sequence design, large-scale molecular simulations and deep learning to develop ALBATROSS, a deep-learning model for predicting ensemble dimensions of IDRs, including the radius of gyration, end-to-end distance, polymer-scaling exponent and ensemble asphericity, directly from sequences at a proteome-wide scale. ALBATROSS is lightweight, easy to use and accessible as both a locally installable software package and a point-and-click-style interface via Google Colab notebooks. We first demonstrate the applicability of our predictors by examining the generalizability of sequence-ensemble relationships in IDRs. Then, we leverage the high-throughput nature of ALBATROSS to characterize the sequence-specific biophysical behavior of IDRs within and between proteomes.
(© 2024. The Author(s).)
References: Wright, P. E. & Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 293, 321–331 (1999). (PMID: 1055021210.1006/jmbi.1999.3110)
Dunker, A. K. et al. Intrinsically disordered protein. J. Mol. Graph. Model. 19, 26–59 (2001). (PMID: 1138152910.1016/S1093-3263(00)00138-8)
Tompa, P. Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527–533 (2002). (PMID: 1236808910.1016/S0968-0004(02)02169-2)
Holehouse, A. S. & Kragelund, B. B. The molecular basis for cellular function of intrinsically disordered protein regions. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00673-0 (2023).
Pappu, R. V., Wang, X., Vitalis, A. & Crick, S. L. A polymer physics perspective on driving forces and mechanisms for protein aggregation - highlight issue: protein folding. Arch. Biochem. Biophys. 469, 132–141 (2008). (PMID: 1793159310.1016/j.abb.2007.08.033)
Borg, M. et al. Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc. Natl Acad. Sci. USA 104, 9650–9655 (2007). (PMID: 17522259188754910.1073/pnas.0702580104)
Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013). (PMID: 23901099374687610.1073/pnas.1304749110)
Hofmann, H. et al. Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc. Natl Acad. Sci. USA 109, 16155–16160 (2012). (PMID: 22984159347959410.1073/pnas.1207719109)
Schuler, B., Soranno, A., Hofmann, H. & Nettels, D. Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu. Rev. Biophys. 45, 207–231 (2016). (PMID: 2714587410.1146/annurev-biophys-062215-010915)
Vancraenenbroeck, R., Harel, Y. S., Zheng, W. & Hofmann, H. Polymer effects modulate binding affinities in disordered proteins. Proc. Natl Acad. Sci. USA 116, 19506–19512 (2019). (PMID: 31488718676530810.1073/pnas.1904997116)
Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 32, 102–112 (2015). (PMID: 25863585451292010.1016/j.sbi.2015.03.008)
Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 8183–8188 (2010). (PMID: 20404210288959610.1073/pnas.0911107107)
Marsh, J. A. & Forman-Kay, J. D. Sequence determinants of compaction in intrinsically disordered proteins. Biophys. J. 98, 2383–2390 (2010). (PMID: 20483348287226710.1016/j.bpj.2010.02.006)
Müller-Späth, S. et al. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 107, 14609–14614 (2010). (PMID: 20639465293043810.1073/pnas.1001743107)
Daughdrill, G. W. Disorder for dummies: functional mutagenesis of transient helical segments in disordered proteins. Methods Mol. Biol. 2141, 3–20 (2020). (PMID: 3269635010.1007/978-1-0716-0524-0_1)
Martin, E. W. et al. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 367, 694–699 (2020). (PMID: 32029630729718710.1126/science.aaw8653)
Dignon, G. L., Zheng, W., Best, R. B., Kim, Y. C. & Mittal, J. Relation between single-molecule properties and phase behavior of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA 115, 9929–9934 (2018). (PMID: 30217894617662510.1073/pnas.1804177115)
Lin, Y.-H. & Chan, H. S. Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. Biophys. J. 112, 2043–2046 (2017). (PMID: 28483149544823910.1016/j.bpj.2017.04.021)
Martin, E. W., Hopkins, J. B. & Mittag, T. Small-angle X-ray scattering experiments of monodisperse intrinsically disordered protein samples close to the solubility limit. Methods Enzymol. 646, 185–222 (2021). (PMID: 3345392510.1016/bs.mie.2020.07.002)
Gibbs, E. B., Cook, E. C. & Showalter, S. A. Application of NMR to studies of intrinsically disordered proteins. Arch. Biochem. Biophys. 628, 57–70 (2017). (PMID: 2850246510.1016/j.abb.2017.05.008)
Kassem, N. et al. Order and disorder: an integrative structure of the full-length human growth hormone receptor. Sci. Adv. 7, eabh3805 (2021). (PMID: 34193419824504710.1126/sciadv.abh3805)
Gomes, G.-N. W. et al. Conformational ensembles of an intrinsically disordered protein consistent with NMR, SAXS, and single-molecule FRET. J. Am. Chem. Soc. 142, 15697–15710 (2020). (PMID: 32840111998732110.1021/jacs.0c02088)
Tesei, G., Schulze, T. K., Crehuet, R. & Lindorff-Larsen, K. Accurate model of liquid–liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties. Proc. Natl Acad. Sci. USA 118, e2111696118 (2021). (PMID: 34716273861222310.1073/pnas.2111696118)
Joseph, J. A. et al. Physics-driven coarse-grained model for biomolecular phase separation with near-quantitative accuracy. Nat. Comput Sci. 1, 732–743 (2021). (PMID: 35795820761299410.1038/s43588-021-00155-3)
Dignon, G. L., Zheng, W., Kim, Y. C., Best, R. B. & Mittal, J. Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput. Biol. 14, e1005941 (2018). (PMID: 29364893579884810.1371/journal.pcbi.1005941)
Regy, R. M., Thompson, J., Kim, Y. C. & Mittal, J. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins. Protein Sci. 30, 1371–1379 (2021). (PMID: 33934416819743010.1002/pro.4094)
Wu, H., Wolynes, P. G. & Papoian, G. A. AWSEM-IDP: a coarse-grained force field for intrinsically disordered proteins. J. Phys. Chem. B 122, 11115–11125 (2018). (PMID: 30091924671321010.1021/acs.jpcb.8b05791)
Tesei, G. & Lindorff-Larsen, K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. Open Res. Eur. 2, 94 (2023). (PMID: 376453121045084710.12688/openreseurope.14967.2)
Tesei, G. et al. Conformational ensembles of the human intrinsically disordered proteome: bridging chain compaction with function and sequence conservation. Nature https://doi.org/10.1038/s41586-023-07004-5 (2024).
González-Foutel, N. S. et al. Conformational buffering underlies functional selection in intrinsically disordered protein regions. Nat. Struct. Mol. Biol. 29, 781–790 (2022). (PMID: 359487661026278010.1038/s41594-022-00811-w)
Cubuk, J. et al. The disordered N-terminal tail of SARS CoV-2 Nucleocapsid protein forms a dynamic complex with RNA. Nucleic. Acids. Res. https://doi.org/10.1093/nar/gkad1215 (2023).
Sanchez-Burgos, I., Espinosa, J. R., Joseph, J. A. & Collepardo-Guevara, R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput. Biol. 18, e1009810 (2022). (PMID: 35108264889670910.1371/journal.pcbi.1009810)
Emenecker, R. J., Guadalupe, K., Shamoon, N. M., Sukenik, S. & Holehouse, A. S. Sequence-ensemble-function relationships for disordered proteins in live cells. Prepint at bioRxiv https://doi.org/10.1101/2023.10.29.564547 (2023).
Sawle, L. & Ghosh, K. A theoretical method to compute sequence dependent configurational properties in charged polymers and proteins. J. Chem. Phys. 143, 085101 (2015). (PMID: 2632887110.1063/1.4929391)
Zheng, W., Dignon, G., Brown, M., Kim, Y. C. & Mittal, J. Hydropathy patterning complements charge patterning to describe conformational preferences of disordered proteins. J. Phys. Chem. Lett. 11, 3408–3415 (2020). (PMID: 32227994745021010.1021/acs.jpclett.0c00288)
Holehouse, A. S. & Pappu, R. V. Collapse transitions of proteins and the interplay among backbone, sidechain, and solvent interactions. Annu. Rev. Biophys. 47, 19–39 (2018). (PMID: 293459911074006610.1146/annurev-biophys-070317-032838)
Lalmansingh, J. M., Keeley, A. T., Ruff, K. M., Pappu, R. V. & Holehouse, A. S. SOURSOP: a Python package for the analysis of simulations of intrinsically disordered proteins. J. Chem. Theory Comput. 19, 5609–5620 (2023). (PMID: 3746345810.1021/acs.jctc.3c00190)
Griffith, D. & Holehouse, A. S. PARROT is a flexible recurrent neural network framework for analysis of large protein datasets. eLife 10, e70576 (2021). (PMID: 34533455844852810.7554/eLife.70576)
Crick, S. L., Jayaraman, M., Frieden, C., Wetzel, R. & Pappu, R. V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc. Natl Acad. Sci. USA 103, 16764–16769 (2006). (PMID: 17075061162900410.1073/pnas.0608175103)
Mukhopadhyay, S., Krishnan, R., Lemke, E. A., Lindquist, S. & Deniz, A. A. A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc. Natl Acad. Sci. USA 104, 2649–2654 (2007). (PMID: 17299036181523610.1073/pnas.0611503104)
Riback, J. A. et al. Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358, 238–241 (2017). (PMID: 29026044595928510.1126/science.aan5774)
Sørensen, C. S. & Kjaergaard, M. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proc. Natl Acad. Sci. USA 116, 23124–23131 (2019). (PMID: 31659043685934610.1073/pnas.1904813116)
Riback, J. A. et al. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 168, 1028–1040 (2017). (PMID: 28283059540168710.1016/j.cell.2017.02.027)
Ginell, G. M. & Holehouse, A. S. An introduction to the stickers-and-spacers framework as applied to biomolecular condensates. Methods Mol. Biol. 2563, 95–116 (2023). (PMID: 3622746910.1007/978-1-0716-2663-4_4)
Wang, J. et al. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174, 688–699 (2018). (PMID: 29961577606376010.1016/j.cell.2018.06.006)
Choi, J.-M., Holehouse, A. S. & Pappu, R. V. Physical principles underlying the complex biology of intracellular phase transitions. Annu. Rev. Biophys. 49, 107–133 (2020). (PMID: 320040901071517210.1146/annurev-biophys-121219-081629)
Harmon, T. S., Holehouse, A. S., Rosen, M. K. & Pappu, R. V. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 6, e30294 (2017). (PMID: 29091028570364110.7554/eLife.30294)
Bremer, A. et al. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nat. Chem. 14, 196–207 (2022). (PMID: 3493104610.1038/s41557-021-00840-w)
Choi, J.-M., Hyman, A. A. & Pappu, R. V. Generalized models for bond percolation transitions of associative polymers. Phys. Rev. E 102, 042403 (2020). (PMID: 332125901084668910.1103/PhysRevE.102.042403)
Alston, J. J., Ginell, G. M., Soranno, A. & Holehouse, A. S. The analytical Flory random coil is a simple-to-use reference model for unfolded and disordered proteins. J. Phys. Chem. B 127, 4746–4760 (2023). (PMID: 372000941087598610.1021/acs.jpcb.3c01619)
Hein, M. Y. et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 163, 712–723 (2015). (PMID: 2649661010.1016/j.cell.2015.09.053)
Ryan, V. H. et al. Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol. Cell 69, 465–479 (2018). (PMID: 29358076580170010.1016/j.molcel.2017.12.022)
Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation. Nat. Commun. 9, 1–13 (2018). (PMID: 10.1038/s41467-018-03255-3)
Sprunger, M. L., Lee, K., Sohn, B. S. & Jackrel, M. E. Molecular determinants and modifiers of Matrin-3 toxicity, condensate dynamics, and droplet morphology. iScience 25, 103900 (2022). (PMID: 35252808888914210.1016/j.isci.2022.103900)
King, M. R. et al. Uncovering molecular grammars of intrinsically disordered regions that organize nucleolar fibrillar centers. Preprint at bioRxiv https://doi.org/10.1101/2022.11.05.515292 (2022).
Fei, J. et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J. Cell Sci. 130, 4180–4192 (2017). (PMID: 291335885769577)
Calnan, B. J., Tidor, B., Biancalana, S., Hudson, D. & Frankel, A. D. Arginine-mediated RNA recognition: the arginine fork. Science 252, 1167–1171 (1991). (PMID: 170952210.1126/science.252.5009.1167)
Cléry, A., Blatter, M. & Allain, F. H.-T. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18, 290–298 (2008). (PMID: 1851508110.1016/j.sbi.2008.04.002)
Hall, K. B. RNA–protein interactions. Curr. Opin. Struct. Biol. 12, 283–288 (2002). (PMID: 1212744510.1016/S0959-440X(02)00323-8)
Corley, M., Burns, M. C. & Yeo, G. W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell 78, 9–29 (2020). (PMID: 32243832720237810.1016/j.molcel.2020.03.011)
Langstein-Skora, I. et al. Sequence- and chemical specificity define the functional landscape of intrinsically disordered regions. Preprint at bioRxiv https://doi.org/10.1101/2022.02.10.480018 (2022).
Brown, C. J., Johnson, A. K., Dunker, A. K. & Daughdrill, G. W. Evolution and disorder. Curr. Opin. Struct. Biol. 21, 441–446 (2011). (PMID: 21482101311223910.1016/j.sbi.2011.02.005)
Zarin, T., Tsai, C. N., Nguyen Ba, A. N. & Moses, A. M. Selection maintains signaling function of a highly diverged intrinsically disordered region. Proc. Natl Acad. Sci. USA 114, E1450–E1459 (2017). (PMID: 28167781533845210.1073/pnas.1614787114)
Nguyen Ba, A. N. et al. Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Sci. Signal. 5, rs1 (2012). (PMID: 22416277487681510.1126/scisignal.2002515)
Holmstrom, E. D., Liu, Z., Nettels, D., Best, R. B. & Schuler, B. Disordered RNA chaperones can enhance nucleic acid folding via local charge screening. Nat. Commun. 10, 2453 (2019). (PMID: 31165735654916510.1038/s41467-019-10356-0)
Nott, T. J., Craggs, T. D. & Baldwin, A. J. Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters. Nat. Chem. 8, 569–575 (2016). (PMID: 2721970110.1038/nchem.2519)
Sarni, S. H. et al. Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry. Proc. Natl Acad. Sci. USA 119, e2208780119 (2022). (PMID: 36375072970473010.1073/pnas.2208780119)
Zúñiga, S. et al. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357, 215–227 (2007). (PMID: 1697920810.1016/j.virol.2006.07.046)
Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol. Cell 57, 936–947 (2015). (PMID: 25747659435276110.1016/j.molcel.2015.01.013)
Martin, E. W. et al. Interplay of folded domains and the disordered low-complexity domain in mediating hnRNPA1 phase separation. Nucleic Acids Res. 49, 2931–2945 (2021). (PMID: 33577679796901710.1093/nar/gkab063)
Taneja, I. & Holehouse, A. S. Folded domain charge properties influence the conformational behavior of disordered tails. Curr. Res Struct. Biol. 3, 216–228 (2021). (PMID: 34557680844678610.1016/j.crstbi.2021.08.002)
Mittal, A., Holehouse, A. S., Cohan, M. C. & Pappu, R. V. Sequence-to-conformation relationships of disordered regions tethered to folded domains of proteins. J. Mol. Biol. 430, 2403–2421 (2018). (PMID: 2976358410.1016/j.jmb.2018.05.012)
Shinn, M. K. et al. Connecting sequence features within the disordered C-terminal linker of Bacillus subtilis FtsZ to functions and bacterial cell division. Proc. Natl Acad. Sci. USA 119, e2211178119 (2022). (PMID: 36215496958630110.1073/pnas.2211178119)
Lee, P., Paik, S.-M., Shin, C.-S., Huh, W.-K. & Hahn, J.-S. Regulation of yeast Yak1 kinase by PKA and autophosphorylation-dependent 14-3-3 binding. Mol. Microbiol. 79, 633–646 (2011). (PMID: 2125510810.1111/j.1365-2958.2010.07471.x)
Parua, P. K. & Young, E. T. Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif. Eukaryot. Cell 13, 21–30 (2014). (PMID: 24142105391095610.1128/EC.00240-13)
Bhat, W., Boutin, G., Rufiange, A. & Nourani, A. Casein kinase 2 associates with the yeast chromatin reassembly factor Spt2/Sin1 to regulate its function in the repression of spurious transcription. Mol. Cell. Biol. 33, 4198–4211 (2013). (PMID: 23979598381188610.1128/MCB.00525-13)
Warren, C. & Shechter, D. Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J. Mol. Biol. 429, 2401–2426 (2017). (PMID: 28610839554457710.1016/j.jmb.2017.06.005)
Janson, G., Valdes-Garcia, G., Heo, L. & Feig, M. Direct generation of protein conformational ensembles via machine learning. Nat. Commun. 14, 774 (2023). (PMID: 36774359992230210.1038/s41467-023-36443-x)
Vani, B. P., Aranganathan, A., Wang, D. & Tiwary, P. AlphaFold2-RAVE: from sequence to Boltzmann ranking. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.3c00290 (2023). (PMID: 10.1021/acs.jctc.3c002903717136410524496)
Meller, A., Bhakat, S., Solieva, S. & Bowman, G. R. Accelerating cryptic pocket discovery using AlphaFold. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.2c01189 (2023). (PMID: 10.1021/acs.jctc.2c011893694820910373493)
Chao, T.-H., Rekhi, S., Mittal, J. & Tabor, D. P. Data-driven models for predicting intrinsically disordered protein polymer physics directly from composition or sequence. ChemRxiv https://doi.org/10.26434/chemrxiv-2023-wrnq1 (2023). (PMID: 10.26434/chemrxiv-2023-wrnq1)
Mugnai, M. L. et al. Sizes, conformational fluctuations, and SAXS profiles for intrinsically disordered proteins. Preprint at bioRxiv https://doi.org/10.1101/2023.04.24.538147 (2023).
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. Preprint at arXiv https://doi.org/10.48550/arXiv.1810.04805 (2019).
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023). (PMID: 3692703110.1126/science.ade2574)
Beltagy, I., Peters, M. E. & Cohan, A. Longformer: the long-document transformer. Preprint at arXiv https://doi.org/10.48550/arXiv.2004.05150 (2020).
Holehouse, A. S. Sparrow: a tool for integrative analysis and prediction from protein sequence data. Zenodo https://doi.org/10.5281/zenodo.6891920 (2022).
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012). (PMID: 23060610351614210.1093/bioinformatics/bts565)
Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022). (PMID: 10.1016/j.cpc.2021.108171)
McGibbon, R. T. et al. MDTraj: a modern, open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015). (PMID: 26488642462389910.1016/j.bpj.2015.08.015)
Tange, O. GNU Parallel 20210622 (‘Protasevich’). Zenodo https://doi.org/10.5281/zenodo.5013933 (2021).
Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford University Press, 2003).
Holehouse, A. S., Garai, K., Lyle, N., Vitalis, A. & Pappu, R. V. Quantitative assessments of the distinct contributions of polypeptide backbone amides versus side chain groups to chain expansion via chemical denaturation. J. Am. Chem. Soc. 137, 2984–2995 (2015). (PMID: 25664638441856210.1021/ja512062h)
Emenecker, R. J., Griffith, D. & Holehouse, A. S. Metapredict V2: an update to metapredict, a fast, accurate, and easy-to-use predictor of consensus disorder and structure. Preprint at bioRxiv https://doi.org/10.1101/2022.06.06.494887 (2022).
Emenecker, R. J., Griffith, D. & Holehouse, A. S. Metapredict: a fast, accurate, and easy-to-use predictor of consensus disorder and structure. Biophys. J. 120, 4312–4319 (2021). (PMID: 34480923855364210.1016/j.bpj.2021.08.039)
Conte, A. D. et al. Critical assessment of protein intrinsic disorder prediction (CAID) - results of round 2. Proteins https://doi.org/10.1002/prot.2658 (2023). (PMID: 10.1002/prot.265837621223)
Ginell, G. M., Flynn, A. J. & Holehouse, A. S. SHEPHARD: a modular and extensible software architecture for analyzing and annotating large protein datasets. Bioinformatics 39, btad488 (2023). (PMID: 375401731042303010.1093/bioinformatics/btad488)
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).
Cohan, M. C., Shinn, M. K., Lalmansingh, J. M. & Pappu, R. V. Uncovering Non-random binary patterns within sequences of intrinsically disordered proteins. J. Mol. Biol. 434, 167373 (2022). (PMID: 3486377710.1016/j.jmb.2021.167373)
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017). (PMID: 28076807523278510.1016/j.bpj.2016.11.3200)
Thomas, P. D. et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022). (PMID: 3471701010.1002/pro.4218)
Byrne, K. P. & Wolfe, K. H. The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005). (PMID: 16169922124009010.1101/gr.3672305)
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). (PMID: 21988835326169910.1038/msb.2011.75)
Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992). (PMID: 14382975045310.1073/pnas.89.22.10915)
معلومات مُعتمدة: RGP0015/2022 Human Frontier Science Program (HFSP); 2128068 NSF | BIO | Division of Molecular and Cellular Biosciences (MCB); 2139839 NSF | BIO | Division of Molecular and Cellular Biosciences (MCB); 2213983 NSF | BIO | Division of Biological Infrastructure (DBI)
المشرفين على المادة: 0 (Intrinsically Disordered Proteins)
0 (Polymers)
تواريخ الأحداث: Date Created: 20240131 Date Completed: 20240313 Latest Revision: 20240318
رمز التحديث: 20240318
مُعرف محوري في PubMed: PMC10927563
DOI: 10.1038/s41592-023-02159-5
PMID: 38297184
قاعدة البيانات: MEDLINE
الوصف
تدمد:1548-7105
DOI:10.1038/s41592-023-02159-5