دورية أكاديمية

Scots pine - panmixia and the elusive signal of genetic adaptation.

التفاصيل البيبلوغرافية
العنوان: Scots pine - panmixia and the elusive signal of genetic adaptation.
المؤلفون: Bruxaux J; Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden., Zhao W; Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden., Hall D; Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden.; Forestry Research Institute of Sweden (Skogforsk), 918 21, Sävar, Sweden., Curtu AL; Department of Silviculture, Transilvania University of Braşov, 500123, Braşov, Romania., Androsiuk P; Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland., Drouzas AD; Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece., Gailing O; Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, 37077, Göttingen, Germany., Konrad H; Department of Forest Biodiversity and Nature Conservation, Unit of Ecological Genetics, Austrian Research Centre for Forests (BFW), 1140, Vienna, Austria., Sullivan AR; Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden., Semerikov V; Institute of Plant and Animal Ecology, Ural Division of Russian Academy of Sciences, 620144, Ekaterinburg, Russia., Wang XR; Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, 901 87, Umeå, Sweden.
المصدر: The New phytologist [New Phytol] 2024 Aug; Vol. 243 (3), pp. 1231-1246. Date of Electronic Publication: 2024 Feb 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Pinus sylvestris*/genetics , Pinus sylvestris*/physiology , Adaptation, Physiological*/genetics , Genetic Variation*, Polymorphism, Single Nucleotide/genetics ; Gene Flow ; Genetics, Population ; Geography
مستخلص: Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global F ST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.
(© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
References: Acosta JJ, Fahrenkrog AM, Neves LG, Resende MFR, Dervinis C, Davis JM, Holliday JA, Kirst M. 2019. Exome resequencing reveals evolutionary history, genomic diversity, and targets of selection in the conifers Pinus taeda and Pinus elliottii. Genome Biology and Evolution 11: 508–520.
Akaike H. 1987. Factor analysis and AIC. Psychometrika 52: 317–332.
Andersson B, Fedorkov A. 2004. Longitudinal differences in Scots pine frost hardiness. Silvae Genetica 53: 76–80.
Bachofen C, Perret‐Gentil A, Wohlgemuth T, Vollenweider P, Moser B. 2021. Phenotypic plasticity versus ecotypic differentiation under recurrent summer drought in two drought‐tolerant pine species. Journal of Ecology 109: 3861–3876.
Barghi N, Hermisson J, Schlötterer C. 2020. Polygenic adaptation: a unifying framework to understand positive selection. Nature Reviews Genetics 21: 769–781.
Boisvert‐Marsh L, Blois S. 2021. Unravelling potential northward migration pathways for tree species under climate change. Journal of Biogeography 48: 1088–1100.
Borcard D, Legendre P. 2002. All‐scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.
Burczyk J, DiFazio SP, Adams WT. 2004. Gene flow in forest trees: how far do genes really travel? Forest Genetics 11: 179.
Carlisle A, Brown A. 1968. Pinus sylvestris L. Journal of Ecology 56: 269–307.
Caudullo G, Welk E, San-Miguel-Ayanz J. 2017. Chorological maps for the main European woody species. Data in Brief 12: 662–666.
Caye K, Deist TM, Martins H, Michel O, François O. 2016. TESS3: fast inference of spatial population structure and genome scans for selection. Molecular Ecology Resources 16: 540–548.
Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent J‐M, Beaulieu J‐LD, Sadori L, Jost A et al. 2006. Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Global Ecology and Biogeography 15: 271–282.
Chen J, Li L, Milesi P, Jansson G, Berlin M, Karlsson B, Aleksic J, Vendramin GG, Lascoux M. 2019. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolutionary Applications 12: 1539–1551.
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso‐2; iso‐3. Fly 6: 80–92.
Corl A, Bi K, Luke C, Challa AS, Stern AJ, Sinervo B, Nielsen R. 2018. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Current Biology 28: 2970–2977.
Davis MB, Shaw RG. 2001. Range shifts and adaptive responses to quaternary climate change. Science 292: 673–679.
De La Torre AR, Wilhite B, Neale DB. 2019. Environmental genome‐wide association reveals climate adaptation is shaped by subtle to moderate allele frequency shifts in Loblolly pine. Genome Biology and Evolution 11: 2976–2989.
Depardieu C, Gérardi S, Nadeau S, Parent GJ, Mackay J, Lenz P, Lamothe M, Girardin MP, Bousquet J, Isabel N. 2021. Connecting tree‐ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Molecular Ecology 30: 3898–3917.
Dering M, Baranowska M, Beridze B, Chybicki IJ, Danelia I, Iszkuło G, Kvartskhava G, Kosiński P, Rączka G, Thomas PA et al. 2021. The evolutionary heritage and ecological uniqueness of Scots pine in the Caucasus ecoregion is at risk of climate changes. Scientific Reports 11: 22845.
Dering M, Kosiński P, Wyka TP, Pers–Kamczyc E, Boratyński A, Boratyńska K, Reich PB, Romo A, Zadworny M, Żytkowiak R et al. 2017. Tertiary remnants and holocene colonizers: genetic structure and phylogeography of Scots pine reveal higher genetic diversity in young boreal than in relict Mediterranean populations and a dual colonization of Fennoscandia. Diversity and Distributions 23: 540–555.
Di‐Giovanni F, Kevan PG. 1991. Factors affecting pollen dynamics and its importance to pollen contamination: a review. Canadian Journal of Forest Research 21: 1155–1170.
Eckert AJ, Bower AD, Jermstad KD, Wegrzyn JL, Knaus BJ, Syring JV, Neale DB. 2013. Multilocus analyses reveal little evidence for lineage‐wide adaptive evolution within major clades of soft pines (Pinus subgenus Strobus). Molecular Ecology 22: 5635–5650.
El‐Kassaby YA, Cappa EP, Chen C, Ratcliffe B, Porth IM. 2024. Efficient genomics‐based ‘end‐to‐end’ selective tree breeding framework. Heredity 132: 98–105.
Ellegren H, Galtier N. 2016. Determinants of genetic diversity. Nature Reviews Genetics 17: 422–433.
Ellis N, Smith SJ, Pitcher CR. 2012. Gradient forests: calculating importance gradients on physical predictors. Ecology 93: 156–168.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14: 2611–2620.
Excoffier L, Dupanloup I, Huerta‐Sánchez E, Sousa VC, Foll M. 2013. Robust demographic inference from genomic and SNP data. PLoS Genetics 9: e1003905.
Excoffier L, Foll M, Petit RJ. 2009. Genetic consequences of range expansions. Annual Review of Ecology, Evolution, and Systematics 40: 481–501.
Excoffier L, Marchi N, Marques DA, Matthey‐Doret R, Gouy A, Sousa VC. 2021. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 37: 4882–4885.
Fickert T, Friend D, Grüninger F, Molnia B, Richter M. 2007. Did debris‐covered glaciers serve as Pleistocene refugia for plants? A new hypothesis derived from observations of recent plant growth on glacier surfaces. Arctic, Antarctic, and Alpine Research 39: 245–257.
Fox EA, Wright AE, Fumagalli M, Vieira FG. 2019. ngsLD: evaluating linkage disequilibrium using genotype likelihoods. Bioinformatics 35: 3855–3856.
Fuchs J, Jovtchev G, Schubert I. 2008. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Research 16: 891–898.
Galiano L, Martínez‐Vilalta J, Lloret F. 2010. Drought‐induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co‐occurring oak species. Ecosystems 13: 978–991.
Gamba D, Muchhala N. 2020. Global patterns of population genetic differentiation in seed plants. Molecular Ecology 29: 3413–3428.
Gautier M. 2015. Genome‐wide scan for adaptive divergence and association with population‐specific covariates. Genetics 201: 1555–1579.
Guo J‐F, Wang B, Liu Z‐L, Mao J‐F, Wang X‐R, Zhao W. 2023. Low genetic diversity and population connectivity fuel vulnerability to climate change for the Tertiary relict pine Pinus bungeana. Journal of Systematics and Evolution 61: 143–156.
Haberstroh S, Werner C, Grün M, Kreuzwieser J, Seifert T, Schindler D, Christen A. 2022. Central European 2018 hot drought shifts Scots pine forest to its tipping point. Plant Biology 24: 1186–1197.
Hall D, Hallingbäck HR, Wu HX. 2016. Estimation of number and size of QTL effects in forest tree traits. Tree Genetics & Genomes 12: 110.
Hall D, Olsson J, Zhao W, Kroon J, Wennström U, Wang X‐R. 2021. Divergent patterns between phenotypic and genetic variation in Scots pine. Plant Communications 2: 100139.
Hallingbäck HR, Burton V, Vizcaíno‐Palomar N, Trotter F, Liziniewicz M, Marchi M, Berlin M, Ray D, Benito GM. 2021. Managing uncertainty in Scots pine range‐wide adaptation under climate change. Frontiers in Ecology and Evolution 9: 807.
Hamrick JL, Godt MJW. 1996. Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1291–1298.
Hewitt GM. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.
Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.
Houston Durrant T, De Rigo D, Caudullo G. 2016. Pinus sylvestris in Europe: distribution, habitat, usage and threats. In: San‐Miguel‐Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A, eds. European Atlas of Forest Tree Species. Luxembourg: Publications Office of the European Union, 132–133.
Huntley B, Birks HJB. 1983. Atlas of past and present pollen maps for Europe, 0–13,000 years ago. Cambridge, UK: Cambridge University Press.
Hurme P, Repo T, Savolainen O, Pääkkönen T. 1997. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris). Canadian Journal of Forest Research 27: 716–723.
Jin W‐T, Gernandt DS, Wehenkel C, Xia X‐M, Wei X‐X, Wang X‐Q. 2021. Phylogenomic and ecological analyses reveal the spatiotemporal evolution of global pines. Proceedings of the National Academy of Sciences, USA 118: e2022302118.
Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P. 2010. Genomic diversity, population structure, and migration following rapid range expansion in the Balsam Poplar, Populus balsamifera. Molecular Ecology 19: 1212–1226.
Kling MM, Ackerly DD. 2020. Global wind patterns and the vulnerability of wind‐dispersed species to climate change. Nature Climate Change 10: 868–875.
Koenigk T, Key J, Vihma T. 2020. Climate change in the arctic. In: Physics and chemistry of the arctic atmosphere, Cham, Switzerland: Springer, 673–705.
Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15: 356.
Korunes KL, Samuk K. 2021. pixy: Unbiased estimation of nucleotide diversity and divergence in the presence of missing data. Molecular Ecology Resources 21: 1359–1368.
Kujala ST, Savolainen O. 2012. Sequence variation patterns along a latitudinal cline in Scots pine (Pinus sylvestris): signs of clinal adaptation? Tree Genetics & Genomes 8: 1451–1467.
Kullman L. 2002. Boreal tree taxa in the central Scandes during the Late‐Glacial: implications for Late‐Quaternary forest history. Journal of Biogeography 29: 1117–1124.
Latta RG. 1998. Differentiation of allelic frequencies at quantitative trait loci affecting locally adaptive traits. American Naturalist 151: 283–292.
Le Corre V, Kremer A. 2003. Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164: 1205–1219.
Le Corre V, Kremer A. 2012. The genetic differentiation at quantitative trait loci under local adaptation. Molecular Ecology 21: 1548–1566.
Legendre P, Legendre L. 2012. Numerical ecology. Oxford, UK: Elsevier.
Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv. doi: 10.48550/arXiv.1303.3997.
Liu X, Fu Y‐X. 2015. Exploring population size changes using SNP frequency spectra. Nature Genetics 47: 555–559.
Liu X, Fu Y‐X. 2020. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biology 21: 280.
Marcus J, Ha W, Barber RF, Novembre J. 2021. Fast and flexible estimation of effective migration surfaces. eLife 10: e61927.
McInnes L, Healy J, Melville J. 2018. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv. doi: 10.48550/arXiv.1802.03426.
McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M. 2014. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment 37: 1440–1451.
Meisner J, Albrechtsen A. 2018. Inferring population structure and admixture proportions in low‐depth NGS data. Genetics 210: 719–731.
Milesi P, Berlin M, Chen J, Orsucci M, Li L, Jansson G, Karlsson B, Lascoux M. 2019. Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: local adaptation and genetic basis of quantitative traits in trees. Evolutionary Applications 12: 1946–1959.
Milesi P, Kastally C, Dauphin B, Cervantes S, Bagnoli F, Budde KB, Cavers S, Ojeda DI, Fady B, Faivre‐Rampant P et al. 2023. Synchronous effective population size changes and genetic stability of forest trees through glacial cycles. bioRxiv. doi: 10.1101/2023.01.05.522822.
Mirov NT. 1967. The genus Pinus. New York, NY, USA: Ronald Press.
Naydenov K, Senneville S, Beaulieu J, Tremblay F, Bousquet J. 2007. Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid‐northern latitudes and in Asia Minor. BMC Evolutionary Biology 7: 233.
Nazareno AG, Bemmels JB, Dick CW, Lohmann LG. 2017. Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources 17: 1136–1147.
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz‐Morris AE, Liechty JD et al. 2014. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biology 15: R59.
Notivol E, Garcia‐Gil M, Alia R, Savolainen O. 2007. Genetic variation of growth rhythm traits in the limits of a latitudinal cline in scots pine. Canadian Journal of Forest Research 37: 540–551.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al. 2019. vegan: community ecology package. [WWW document] URL: https://CRAN.R‐project.org/package=vegan [accessed 17 January 2023].
Orsini L, Vanoverbeke J, Swillen I, Mergeay J, De Meester L. 2013. Drivers of population genetic differentiation in the wild: isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 22: 5983–5999.
Pan J, Wang B, Pei Z‐Y, Zhao W, Gao J, Mao J‐F, Wang X‐R. 2015. Optimization of the genotyping‐by‐sequencing strategy for population genomic analysis in conifers. Molecular Ecology Resources 15: 711–722.
Parducci L, Jørgensen T, Tollefsrud MM, Elverland E, Alm T, Fontana SL, Bennett KD, Haile J, Matetovici I, Suyama Y et al. 2012. Glacial survival of boreal trees in northern Scandinavia. Science 335: 1083–1086.
Patton H, Hubbard A, Andreassen K, Winsborrow M, Stroeven AP. 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quaternary Science Reviews 153: 97–121.
de Pedro M, Riba M, González‐Martínez SC, Seoane P, Bautista R, Claros MG, Mayol M. 2021. Demography, genetic diversity and expansion load in the colonizing species Leontodon longirostris (Asteraceae) throughout its native range. Molecular Ecology 30: 1190–1205.
Piotti A, Leonardi S, Piovani P, Scalfi M, Menozzi P. 2009. Spruce colonization at treeline: where do those seeds come from? Heredity 103: 136–145.
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
Pyhäjärvi T, García‐Gil MR, Knürr T, Mikkonen M, Wachowiak W, Savolainen O. 2007. Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177: 1713–1724.
Pyhäjärvi T, Kujala ST, Savolainen O. 2020. 275 years of forestry meets genomics in Pinus sylvestris. Evolutionary Applications 13: 11–30.
Pyhäjärvi T, Salmela MJ, Savolainen O. 2008. Colonization routes of Pinus sylvestris inferred from distribution of mitochondrial DNA variation. Tree Genetics & Genomes 4: 247–254.
Rehfeldt GE, Tchebakova NM, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI. 2002. Intraspecific responses to climate in Pinus sylvestris. Global Change Biology 8: 912–929.
Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. 2015. A practical guide to environmental association analysis in landscape genomics. Molecular Ecology 24: 4348–4370.
Robledo‐Arnuncio JJ, Gil L. 2005. Patterns of pollen dispersal in a small population of Pinus sylvestris L. revealed by total‐exclusion paternity analysis. Heredity 94: 13–22.
Saladin B, Leslie AB, Wüest RO, Litsios G, Conti E, Salamin N, Zimmermann NE. 2017. Fossils matter: improved estimates of divergence times in Pinus reveal older diversification. BMC Evolutionary Biology 17: 95.
Sannikov SN, Petrova IV. 2012. Phylogenogeography and genotaxonomy of Pinus sylvestris L. populations. Russian Journal of Ecology 43: 273–280.
Savolainen O, Bokma F, García‐Gil R, Komulainen P, Repo T. 2004. Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecology and Management 197: 79–89.
Savolainen O, Lascoux M, Merila J. 2013. Ecological genomics of local adaptation. Nature Reviews Genetics 14: 807–820.
Savolainen O, Pyhäjärvi T, Knürr T. 2007. Gene flow and local adaptation in trees. Annual Review of Ecology, Evolution, and Systematics 38: 595–619.
Semerikov NV, Petrova IV, Sannikov SN, Semerikova SA, Tashev AN, Lascoux M, Semerikov VL. 2020. Cytoplasmic DNA variation does not support a recent contribution of Pinus sylvestris L. from the Caucasus to the main range. Tree Genetics & Genomes 16: 59.
Shalev TJ, El‐Dien OG, Yuen MM, Shengqiang S, Jackman SD, Warren RL, Coombe L, van der Merwe L, Stewart A, Boston LB. 2022. The western redcedar genome reveals low genetic diversity in a self‐compatible conifer. Genome Research 32: 1952–1964.
Skotte L, Korneliussen TS, Albrechtsen A. 2013. Estimating individual admixture proportions from next generation sequencing data. Genetics 195: 693–702.
Soranzo N, Alia R, Provan J, Powell W. 2000. Patterns of variation at a mitochondrial sequence‐tagged‐site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Molecular Ecology 9: 1205–1211.
Taeger S, Fussi B, Konnert M, Menzel A. 2013. Large‐scale genetic structure and drought‐induced effects on European Scots pine (Pinus sylvestris L.) seedlings. European Journal of Forest Research 132: 481–496.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
Tóth EG, Bede‐Fazekas Á, Vendramin GG, Bagnoli F, Höhn M. 2019. Mid‐Pleistocene and Holocene demographic fluctuation of Scots pine (Pinus sylvestris L.) in the Carpathian Mountains and the Pannonian Basin: signs of historical expansions and contractions. Quaternary International 504: 202–213.
Tóth EG, Köbölkuti ZA, Pedryc A, Höhn M. 2017a. Evolutionary history and phylogeography of Scots pine (Pinus sylvestris L.) in Europe based on molecular markers. Journal of Forestry Research 28: 637–651.
Tóth EG, Vendramin GG, Bagnoli F, Cseke K, Höhn M. 2017b. High genetic diversity and distinct origin of recently fragmented Scots pine (Pinus sylvestris L.) populations along the Carpathians and the Pannonian Basin. Tree Genetics & Genomes 13: 47.
Tyrmi JS, Vuosku J, Acosta JJ, Li Z, Sterck L, Cervera MT, Savolainen O, Pyhäjärvi T. 2020. Genomics of clinal local adaptation in Pinus sylvestris under continuous environmental and spatial genetic setting. G3: Genes, Genomes, Genetics 10: 2683–2696.
Vitasse Y, Bresson CC, Kremer A, Michalet R, Delzon S. 2010. Quantifying phenological plasticity to temperature in two temperate tree species. Functional Ecology 24: 1211–1218.
Wachowiak W, Perry A, Zaborowska J, Gonzalez‐Martinez SC, Cavers S. 2022a. Admixture and selection patterns across the European distribution of Scots pine, Pinus sylvestris (Pinaceae). Botanical Journal of the Linnean Society 200: 416–432.
Wachowiak W, Salmela MJ, Ennos RA, Iason G, Cavers S. 2011. High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland. Heredity 106: 775–787.
Wachowiak W, Żukowska WB, Perry A, Lewandowski A, Cavers S, Łabiszak B. 2022b. Phylogeography of Scots pine in Europe and Asia based on mtDNA polymorphisms. Journal of Systematics and Evolution 61: 315–327.
Wang IJ, Bradburd GS. 2014. Isolation by environment. Molecular Ecology 23: 5649–5662.
Wang X, Bernhardsson C, Ingvarsson PK. 2020. Demography and natural selection have shaped genetic variation in the widely distributed conifer Norway Spruce (Picea abies). Genome Biology and Evolution 12: 3803–3817.
Willis KJ, Rudner E, Sümegi P. 2000. The full‐glacial forests of central and southeastern Europe. Quaternary Research 53: 203–213.
Willis KJ, van Andel TH. 2004. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews 23: 2369–2387.
Willyard A, Syring J, Gernandt DS, Liston A, Cronn R. 2007. Fossil calibration of molecular divergence infers a moderate mutation rate and recent radiations for Pinus. Molecular Biology and Evolution 24: 90–101.
Wright S. 1943. Isolation by distance. Genetics 28: 114–138.
Xia H, Wang B, Zhao W, Pan J, Mao J‐F, Wang X‐R. 2018. Combining mitochondrial and nuclear genome analyses to dissect the effects of colonization, environment, and geography on population structure in Pinus tabuliformis. Evolutionary Applications 11: 1931–1945.
Zale R, Huang Y‐T, Bigler C, Wood JR, Dalén L, Wang X‐R, Segerström U, Klaminder J. 2018. Growth of plants on the Late Weichselian ice‐sheet during Greenland interstadial‐1? Quaternary Science Reviews 185: 222–229.
Zeb U, Dong W‐L, Zhang T‐T, Wang R‐N, Shahzad K, Ma X‐F, Li Z‐H. 2020. Comparative plastid genomics of Pinus species: insights into sequence variations and phylogenetic relationships. Journal of Systematics and Evolution 58: 118–132.
Zhao W, Sun Y‐Q, Pan J, Sullivan AR, Arnold ML, Mao J‐F, Wang X‐R. 2020. Effects of landscapes and range expansion on population structure and local adaptation. New Phytologist 228: 330–343.
Zimin A, Stevens KA, Crepeau MW, Holtz‐Morris A, Koriabine M, Marçais G, Puiu D, Roberts M, Wegrzyn JL, Jong PJ et al. 2014. Sequencing and assembly of the 22‐Gb Loblolly pine genome. Genetics 196: 875–890.
معلومات مُعتمدة: T4F program Sweden; 122021000090-5 IPAE; 2018-00842 Svenska Forskningsrådet Formas; 2021-02155 Svenska Forskningsrådet Formas; Carl Tryggers Stiftelse för Vetenskaplig Forskning; 2018-05973 Swedish Research Council
فهرسة مساهمة: Keywords: Pinus sylvestris; conifer; demography; gene flow; genetic diversity; genetic‐environmental association; population structure
تواريخ الأحداث: Date Created: 20240202 Date Completed: 20240704 Latest Revision: 20240704
رمز التحديث: 20240704
DOI: 10.1111/nph.19563
PMID: 38308133
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.19563