دورية أكاديمية

KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation.

التفاصيل البيبلوغرافية
العنوان: KAT8 is upregulated and recruited to the promoter of Atg8 by FOXO to induce H4 acetylation for autophagy under 20-hydroxyecdysone regulation.
المؤلفون: Liu TW; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China., Zhao YM; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China., Jin KY; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China., Wang JX; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China. Electronic address: jxwang@sdu.edu.cn., Zhao XF; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China. Electronic address: xfzhao@sdu.edu.cn.
المصدر: The Journal of biological chemistry [J Biol Chem] 2024 Mar; Vol. 300 (3), pp. 105704. Date of Electronic Publication: 2024 Feb 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology Country of Publication: United States NLM ID: 2985121R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1083-351X (Electronic) Linking ISSN: 00219258 NLM ISO Abbreviation: J Biol Chem Subsets: MEDLINE
أسماء مطبوعة: Publication: 2021- : [New York, NY] : Elsevier Inc. on behalf of American Society for Biochemistry and Molecular Biology
Original Publication: Baltimore, MD : American Society for Biochemistry and Molecular Biology
مواضيع طبية MeSH: Autophagy*/genetics , Ecdysterone*/metabolism , Protein Processing, Post-Translational* , Helicoverpa armigera*/genetics , Helicoverpa armigera*/metabolism , Histone Acetyltransferases*/genetics , Histone Acetyltransferases*/metabolism , Histones*/metabolism, Acetylation ; Promoter Regions, Genetic
مستخلص: Selective gene expression in cells in physiological or pathological conditions is important for the growth and development of organisms. Acetylation of histone H4 at K16 (H4K16ac) catalyzed by histone acetyltransferase 8 (KAT8) is known to promote gene transcription; however, the regulation of KAT8 transcription and the mechanism by which KAT8 acetylates H4K16ac to promote specific gene expression are unclear. Using the lepidopteran insect Helicoverpa armigera as a model, we reveal that the transcription factor FOXO promotes KAT8 expression and recruits KAT8 to the promoter region of autophagy-related gene 8 (Atg8) to increase H4 acetylation at that location, enabling Atg8 transcription under the steroid hormone 20-hydroxyecdysone (20E) regulation. H4K16ac levels are increased in the midgut during metamorphosis, which is consistent with the expression profiles of KAT8 and ATG8. Knockdown of Kat8 using RNA interference results in delayed pupation and repression of midgut autophagy and decreases H4K16ac levels. Overexpression of KAT8-GFP promotes autophagy and increases H4K16ac levels. FOXO, KAT8, and H4K16ac colocalized at the FOXO-binding region to promote Atg8 transcription under 20E regulation. Acetylated FOXO at K180 and K183 catalyzed by KAT8 promotes gene transcription for autophagy. 20E via FOXO promotes Kat8 transcription. Knockdown or overexpression of FOXO appeared to give similar results as knockdown or overexpression of KAT8. Therefore, FOXO upregulates KAT8 expression and recruits KAT8 to the promoter region of Atg8, where the KAT8 induces H4 acetylation to promote Atg8 transcription for autophagy under 20E regulation. This study reveals the mechanism that KAT8 promotes transcription of a specific gene.
Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article.
(Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
فهرسة مساهمة: Keywords: 20-hydroxyecdysone; FOXO; H4K16ac; KAT8; autophagy
المشرفين على المادة: 5289-74-7 (Ecdysterone)
EC 2.3.1.48 (Histone Acetyltransferases)
0 (Histones)
تواريخ الأحداث: Date Created: 20240203 Date Completed: 20240403 Latest Revision: 20240416
رمز التحديث: 20240416
مُعرف محوري في PubMed: PMC10904276
DOI: 10.1016/j.jbc.2024.105704
PMID: 38309506
قاعدة البيانات: MEDLINE
الوصف
تدمد:1083-351X
DOI:10.1016/j.jbc.2024.105704