دورية أكاديمية

Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota.

التفاصيل البيبلوغرافية
العنوان: Gestational diabetes augments group B Streptococcus infection by disrupting maternal immunity and the vaginal microbiota.
المؤلفون: Mercado-Evans V; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA.; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA., Mejia ME; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Zulk JJ; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Ottinger S; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Hameed ZA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Serchejian C; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Marunde MG; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Robertson CM; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Ballard MB; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA., Ruano SH; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA., Korotkova N; Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA., Flores AR; Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School, UTHealth Houston, Children's Memorial Hermann Hospital, Houston, TX, USA., Pennington KA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA., Patras KA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA. katy.patras@bcm.edu.; Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA. katy.patras@bcm.edu.
المصدر: Nature communications [Nat Commun] 2024 Feb 03; Vol. 15 (1), pp. 1035. Date of Electronic Publication: 2024 Feb 03.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Diabetes, Gestational* , Microbiota* , Streptococcal Infections*/microbiology, Pregnancy ; Female ; Humans ; Animals ; Mice ; Infectious Disease Transmission, Vertical ; Cytokines ; Vagina/microbiology ; Streptococcus ; Streptococcus agalactiae
مستخلص: Group B Streptococcus (GBS) is a pervasive perinatal pathogen, yet factors driving GBS dissemination in utero are poorly defined. Gestational diabetes mellitus (GDM), a complication marked by dysregulated immunity and maternal microbial dysbiosis, increases risk for GBS perinatal disease. Using a murine GDM model of GBS colonization and perinatal transmission, we find that GDM mice display greater GBS in utero dissemination and subsequently worse neonatal outcomes. Dual-RNA sequencing reveals differential GBS adaptation to the GDM reproductive tract, including a putative glycosyltransferase (yfhO), and altered host responses. GDM immune disruptions include reduced uterine natural killer cell activation, impaired recruitment to placentae, and altered maternofetal cytokines. Lastly, we observe distinct vaginal microbial taxa associated with GDM status and GBS invasive disease status. Here, we show a model of GBS dissemination in GDM hosts that recapitulates several clinical aspects and identifies multiple host and bacterial drivers of GBS perinatal disease.
(© 2024. The Author(s).)
References: Seale, A. C. et al. Estimates of the burden of group B Streptococcal disease worldwide for pregnant women, stillbirths, and children. Clin. Infect. Dis. 65, S200–s219 (2017). (PMID: 29117332584994010.1093/cid/cix664)
Gonçalves, B. P. et al. Group B streptococcus infection during pregnancy and infancy: estimates of regional and global burden. Lancet Glob. Health 10, e807–e819 (2022). (PMID: 35490693909090410.1016/S2214-109X(22)00093-6)
Russell, N. J. et al. Maternal colonization with group B streptococcus and serotype distribution worldwide: systematic review and meta-analyses. Clin. Infect. Dis. 65, S100–s111 (2017). (PMID: 29117327584825910.1093/cid/cix658)
Le Doare, K. & Heath, P. T. An overview of global GBS epidemiology. Vaccine 31, D7–D12 (2013). Suppl 4. (PMID: 2397334910.1016/j.vaccine.2013.01.009)
Romero, R. et al. Evidence that intra-amniotic infections are often the result of an ascending invasion - a molecular microbiological study. J. Perinat. Med. 47, 915–931 (2019). (PMID: 31693497714794110.1515/jpm-2019-0297)
Sgayer, I. et al. Routine uterine culture swab during cesarean section and its clinical correlations: A retrospective comparative study. Eur. J. Obstet. Gynecol. Reprod. Biol. 249, 42–46 (2020). (PMID: 3234894910.1016/j.ejogrb.2020.04.011)
McDonald, H. M. & Chambers, H. M. Intrauterine infection and spontaneous midgestation abortion: is the spectrum of microorganisms similar to that in preterm labor? Infect. Dis. Obstet. Gynecol. 8, 220–227 (2000). (PMID: 11220481178469910.1002/1098-0997(2000)8:5<220::AID-IDOG1022>3.0.CO;2-I)
de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019). (PMID: 31367035669754010.1038/s41586-019-1451-5)
Le Doare, K. et al. Intrapartum antibiotic chemoprophylaxis policies for the prevention of Group B streptococcal disease worldwide: systematic review. Clin. Infect. Dis. 65, S143–s151 (2017). (PMID: 29117324585061910.1093/cid/cix654)
Tapiainen, T. et al. Impact of intrapartum and postnatal antibiotics on the gut microbiome and emergence of antimicrobial resistance in infants. Sci. Rep. 9, 10635 (2019). (PMID: 31337807665039510.1038/s41598-019-46964-5)
Patras, K. A. et al. Group B streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell Microbiol. 15, 1154–1167 (2013). (PMID: 23298320365733510.1111/cmi.12105)
Randis, T. M. et al. Group B Streptococcus β-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J. Infect. Dis. 210, 265–273 (2014). (PMID: 24474814409224810.1093/infdis/jiu067)
Wang, N. Y. et al. Group B streptococcal serine-rich repeat proteins promote interaction with fibrinogen and vaginal colonization. J. Infect. Dis. 210, 982–991 (2014). (PMID: 24620021419205010.1093/infdis/jiu151)
Sheen, T. R. et al. Serine-rich repeat proteins and pili promote Streptococcus agalactiae colonization of the vaginal tract. J. Bacteriol. 193, 6834–6842 (2011). (PMID: 21984789323283410.1128/JB.00094-11)
Vornhagen, J. et al. Bacterial hyaluronidase promotes ascending GBS infection and preterm birth. mBio 7, e00781–16 (2016).
Faralla, C. et al. Analysis of two-component systems in group B Streptococcus shows that RgfAC and the novel FspSR modulate virulence and bacterial fitness. mBio 5, e00870–00814 (2014). (PMID: 24846378403045010.1128/mBio.00870-14)
Cook, L. C. C., Hu, H., Maienschein-Cline, M. & Federle, M. J. A vaginal tract signal detected by the Group B Streptococcus SaeRS system elicits transcriptomic changes and enhances murine colonization. Infect. Immun. 86, e00762–17 (2018). (PMID: 29378799586502910.1128/IAI.00762-17)
Santi, I. et al. CsrRS regulates group B Streptococcus virulence gene expression in response to environmental pH: a new perspective on vaccine development. J. Bacteriol. 191, 5387–5397 (2009). (PMID: 19542277272563410.1128/JB.00370-09)
Di Palo, B. et al. Adaptive response of Group B streptococcus to high glucose conditions: new insights on the CovRS regulation network. PLoS ONE 8, e61294 (2013). (PMID: 23585887362183010.1371/journal.pone.0061294)
Mereghetti, L., Sitkiewicz, I., Green, N. M. & Musser, J. M. Extensive adaptive changes occur in the transcriptome of Streptococcus agalactiae (group B streptococcus) in response to incubation with human blood. PLoS ONE 3, e3143 (2008). (PMID: 18769548251983510.1371/journal.pone.0003143)
Dammann, A. N. et al. Genome-wide fitness analysis of group B Streptococcus in human amniotic fluid reveals a transcription factor that controls multiple virulence traits. PLoS Pathog. 17, e1009116 (2021). (PMID: 33684178797186010.1371/journal.ppat.1009116)
Sitkiewicz, I. et al. Transcriptome adaptation of group B Streptococcus to growth in human amniotic fluid. PLoS ONE 4, e6114 (2009). (PMID: 19568429270025810.1371/journal.pone.0006114)
Burcham, L. R. et al. Genomic analyses identify manganese homeostasis as a driver of Group B streptococcal vaginal colonization. mBio 13, e0098522 (2022). (PMID: 3565853810.1128/mbio.00985-22)
Ramos, E. et al. Group B streptococcus colonization in pregnant diabetic women. Obstet. Gynecol. 89, 257–260 (1997). (PMID: 901503110.1016/S0029-7844(96)00489-9)
Edwards, J. M. et al. Group B Streptococcus (GBS) colonization and disease among pregnant women: a historical cohort study. Infect. Dis. Obstet. Gynecol. 2019, 5430493 (2019). (PMID: 30853787637806110.1155/2019/5430493)
Håkansson, S. & Källén, K. Impact and risk factors for early-onset group B streptococcal morbidity: analysis of a national, population-based cohort in Sweden 1997-2001. Bjog 113, 1452–1458 (2006). (PMID: 1708365510.1111/j.1471-0528.2006.01086.x)
Plows, J. F., Stanley, J. L., Baker, P. N., Reynolds, C. M. & Vickers, M. H. The pathophysiology of gestational diabetes mellitus. Int J. Mol. Sci. 19, 3342 (2018). (PMID: 30373146627467910.3390/ijms19113342)
Sifnaios, E. et al. Gestational diabetes and T-cell (Th1/Th2/Th17/Treg) immune profile. Vivo 33, 31–40 (2019). (PMID: 10.21873/invivo.11435)
Pendeloski, K. P. et al. Immunoregulatory molecules in patients with gestational diabetes mellitus. Endocrine 50, 99–109 (2015). (PMID: 2575491310.1007/s12020-015-0567-0)
Sheu, A. et al. A proinflammatory CD4(+) T cell phenotype in gestational diabetes mellitus. Diabetologia 61, 1633–1643 (2018). (PMID: 2969160010.1007/s00125-018-4615-1)
Lobo, T. F. et al. Impaired Treg and NK cells profile in overweight women with gestational diabetes mellitus. Am. J. Reprod. Immunol. 79, e12810 (2018).
López-Tinoco, C. et al. Cytokine profile, metabolic syndrome and cardiovascular disease risk in women with late-onset gestational diabetes mellitus. Cytokine 58, 14–19 (2012). (PMID: 2220050810.1016/j.cyto.2011.12.004)
Hara Cde, C. et al. Characterization of natural killer cells and cytokines in maternal placenta and fetus of diabetic mothers. J. Immunol. Res. 2016, 7154524 (2016). (PMID: 27294162)
McElwain, C. J., McCarthy, F. P. & McCarthy, C. M. Gestational diabetes mellitus and maternal immune dysregulation: what we know so far. Int J. Mol. Sci. 22, 4261 (2021). (PMID: 33923959807379610.3390/ijms22084261)
Stoikou, M. et al. Gestational diabetes mellitus is associated with altered neutrophil activity. Front. Immunol. 8, 702 (2017). (PMID: 28659928546988310.3389/fimmu.2017.00702)
Yu, J. et al. Assessment of the number and function of macrophages in the placenta of gestational diabetes mellitus patients. J. Huazhong Univ. Sci. Technol. Med. Sci. 33, 725–729 (2013). (PMID: 10.1007/s11596-013-1187-7)
Wang, J. et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67, 1614–1625 (2018). (PMID: 2976016910.1136/gutjnl-2018-315988)
Cortez, R. V. et al. Microbiome and its relation to gestational diabetes. Endocrine 64, 254–264 (2019). (PMID: 3042113510.1007/s12020-018-1813-z)
Crusell, M. K. W. et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6, 89 (2018). (PMID: 29764499595242910.1186/s40168-018-0472-x)
Pennington, K. A., van der Walt, N., Pollock, K. E., Talton, O. O. & Schulz, L. C. Effects of acute exposure to a high-fat, high-sucrose diet on gestational glucose tolerance and subsequent maternal health in mice. Biol. Reprod. 96, 435–445 (2017). (PMID: 2820377310.1095/biolreprod.116.144543)
Mishra, A., Ruano, S. H., Saha, P. K. & Pennington, K. A. A novel model of gestational diabetes: Acute high fat high sugar diet results in insulin resistance and beta cell dysfunction during pregnancy in mice. PLoS ONE 17, e0279041 (2022). (PMID: 36520818975417110.1371/journal.pone.0279041)
Pennington, K. A. et al. Brief high fat high sugar diet results in altered energy and fat metabolism during pregnancy in mice. Sci. Rep. 10, 20866 (2020). (PMID: 33257770770568710.1038/s41598-020-77529-6)
Zhu, L. et al. Genetic basis underlying the hyperhemolytic phenotype of streptococcus agalactiae Strain CNCTC10/84. J. Bacteriol. 202, e00504–e00520 (2020). (PMID: 32958630764815310.1128/JB.00504-20)
Ahn, S. J. et al. Characterization of LrgAB as a stationary phase-specific pyruvate uptake system in Streptococcus mutans. BMC Microbiol. 19, 223 (2019). (PMID: 31606034679002610.1186/s12866-019-1600-x)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2021). (PMID: 872822410.1093/nar/gkab1061)
Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005). (PMID: 15980461116016910.1093/nar/gki408)
Alexander, J. A. N. & Locher, K. P. Emerging structural insights into C-type glycosyltransferases. Curr. Opin. Struct. Biol. 79, 102547 (2023). (PMID: 3682776110.1016/j.sbi.2023.102547)
Eugster, M. R. et al. Bacteriophage predation promotes serovar diversification in Listeria monocytogenes. Mol. Microbiol. 97, 33–46 (2015). (PMID: 2582512710.1111/mmi.13009)
Rismondo, J., Percy, M. G. & Gründling, A. Discovery of genes required for lipoteichoic acid glycosylation predicts two distinct mechanisms for wall teichoic acid glycosylation. J. Biol. Chem. 293, 3293–3306 (2018). (PMID: 29343515583611010.1074/jbc.RA117.001614)
Pritzlaff, C. A. et al. Genetic basis for the beta-haemolytic/cytolytic activity of group B Streptococcus. Mol. Microbiol .39, 236–247 (2001). (PMID: 1113644610.1046/j.1365-2958.2001.02211.x)
Sherwood, O. D. Relaxin’s physiological roles and other diverse actions. Endocr. Rev. 25, 205–234 (2004). (PMID: 1508252010.1210/er.2003-0013)
Sojka, D. K. et al. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife 3, e01659 (2014). (PMID: 24714492397557910.7554/eLife.01659)
Andrade, E. B. et al. A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection. Nat. Commun. 9, 3138 (2018). (PMID: 30087335608147510.1038/s41467-018-05492-y)
Bernardini, R. et al. Neonatal protection and preterm birth reduction following maternal group B streptococcus vaccination in a mouse model. J. Matern. Fetal Neonatal. Med. 30, 2844–2850 (2017). (PMID: 2797399110.1080/14767058.2016.1265932)
Allard, M. J., Giraud, A., Segura, M. & Sebire, G. Sex-specific maternofetal innate immune responses triggered by group B Streptococci. Sci. Rep. 9, 8587 (2019). (PMID: 31197179656574910.1038/s41598-019-45029-x)
Chang, D. H. et al. Vaginal microbiota profiles of native korean women and associations with high-risk pregnancy. J. Microbiol Biotechnol. 30, 248–258 (2020). (PMID: 3183879210.4014/jmb.1908.08016)
Dunlop, A. L. et al. Vaginal microbiome composition in early pregnancy and risk of spontaneous preterm and early term birth among African American Women. Front. Cell Infect. Microbiol. 11, 641005 (2021). (PMID: 33996627811778410.3389/fcimb.2021.641005)
Tabatabaei, N. et al. Vaginal microbiome in early pregnancy and subsequent risk of spontaneous preterm birth: a case-control study. Bjog 126, 349–358 (2019). (PMID: 2979177510.1111/1471-0528.15299)
Rafat, D. et al. Association of vaginal dysbiosis and gestational diabetes mellitus with adverse perinatal outcomes. Int J. Gynaecol. Obstet. 158, 70–78 (2022). (PMID: 3456186110.1002/ijgo.13945)
Di Paola, M. et al. Identification of vaginal microbial communities associated with extreme cervical shortening in pregnant women. J. Clin. Med. 9, 3621 (2020).
Vrbanac, A. et al. The murine vaginal microbiota and its perturbation by the human pathogen group B Streptococcus. BMC Microbiol. 18, 197 (2018). (PMID: 30477439626055810.1186/s12866-018-1341-2)
Mejia, M. E. et al. Vaginal microbial dynamics and pathogen colonization in a humanized microbiota mouse model. NPJ Biofilms Microbiomes 9, 87 (2023). (PMID: 379856591066185110.1038/s41522-023-00454-9)
Siqueira, F., Ferreira, E. M., de Matos Calderon, I. & Dias, A. Prevalence of colonisation by group B streptococcus in pregnant patients in Taguatinga, Federal District, Brazil: a cross-sectional study. Arch. Gynecol. Obstet. 299, 703–711 (2019). (PMID: 3065644410.1007/s00404-019-05040-z)
Lukic, A. et al. Cervicovaginal bacteria and fungi in pregnant diabetic and non-diabetic women: a multicenter observational cohort study. Eur. Rev. Med. Pharm. Sci. 21, 2303–2315 (2017).
Mercado-Evans V., Zulk J. J., Hameed Z. A., Patras K. A. Gestational diabetes as a risk factor for GBS maternal rectovaginal colonization: a systematic review and meta-analysis. medRxiv, https://doi.org/10.1101/2023.11.02.23297989 (2023).
van Kassel, M. N. et al. Sex differences in long-term outcomes after Group B streptococcal infections during infancy in denmark and the netherlands: national cohort studies of neurodevelopmental impairments and mortality. Clin. Infect. Dis. 74, S54–s63 (2022). (PMID: 3472569410.1093/cid/ciab822)
Lykke, M. R., Sørensen, H. T., Lawn, J. E. & Horváth-Puhó, E. Long-term risk of epilepsy following invasive group b streptococcus disease in neonates in Denmark. JAMA Netw. Open 6, e239507 (2023). (PMID: 370836621012217610.1001/jamanetworkopen.2023.9507)
Ryan, B. C. & Vandenbergh, J. G. Intrauterine position effects. Neurosci. Biobehav. Rev. 26, 665–678 (2002). (PMID: 1247984110.1016/S0149-7634(02)00038-6)
He, Z. et al. The initial oral microbiota of neonates among subjects with gestational diabetes mellitus. Front. Pediatr. 7, 513 (2019). (PMID: 31921726691472610.3389/fped.2019.00513)
Chen, T. et al. Gestational diabetes mellitus is associated with the neonatal gut microbiota and metabolome. BMC Med. 19, 120 (2021). (PMID: 34039350815775110.1186/s12916-021-01991-w)
Inoue, H., Suzuki, D. & Asai, K. A putative bactoprenol glycosyltransferase, CsbB, in Bacillus subtilis activates SigM in the absence of co-transcribed YfhO. Biochem. Biophys. Res. Commun. 436, 6–11 (2013). (PMID: 2363233110.1016/j.bbrc.2013.04.064)
Zhuang, Y. et al. B lymphocytes are predictors of insulin resistance in women with gestational diabetes mellitus. Endocr. Metab. Immune Disord. Drug Targets 19, 358–366 (2019). (PMID: 30621567704050310.2174/1871530319666190101130300)
Lapolla, A. et al. Lymphocyte subsets and cytokines in women with gestational diabetes mellitus and their newborn. Cytokine 31, 280–287 (2005). (PMID: 1597989110.1016/j.cyto.2005.05.004)
Schober, L. et al. The role of regulatory T cell (Treg) subsets in gestational diabetes mellitus. Clin. Exp. Immunol. 177, 76–85 (2014). (PMID: 24547967408915610.1111/cei.12300)
Paolino, M. et al. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature 589, 442–447 (2021). (PMID: 3336181110.1038/s41586-020-03071-0)
Bari, M. F. et al. Elevated soluble CD163 in gestational diabetes mellitus: secretion from human placenta and adipose tissue. PLoS ONE 9, e101327 (2014). (PMID: 24983948407780910.1371/journal.pone.0101327)
Villota, S. D., Toledo-Rodriguez, M. & Leach, L. Compromised barrier integrity of human feto-placental vessels from gestational diabetic pregnancies is related to downregulation of occludin expression. Diabetologia 64, 195–210 (2021). (PMID: 3300123110.1007/s00125-020-05290-6)
Barke, T. L. et al. Gestational diabetes mellitus is associated with increased CD163 expression and iron storage in the placenta. Am. J. Reprod. Immunol. 80, e13020 (2018). (PMID: 29984475619347110.1111/aji.13020)
Kothary, V. et al. Group B streptococcus induces neutrophil recruitment to gestational tissues and elaboration of extracellular traps and nutritional immunity. Front. Cell Infect. Microbiol. 7, 19 (2017). (PMID: 28217556528999410.3389/fcimb.2017.00019)
Gaynor, L. M. & Colucci, F. Uterine natural killer cells: functional distinctions and influence on pregnancy in humans and mice. Front. Immunol. 8, 467 (2017). (PMID: 28484462540247210.3389/fimmu.2017.00467)
Schumacher, A., Costa, S. D. & Zenclussen, A. C. Endocrine factors modulating immune responses in pregnancy. Front. Immunol. 5, 196 (2014). (PMID: 24847324402111610.3389/fimmu.2014.00196)
Schmidt, S., Ullrich, E., Bochennek, K., Zimmermann, S. Y. & Lehrnbecher, T. Role of natural killer cells in antibacterial immunity. Expert Rev. Hematol. 9, 1119–1127 (2016). (PMID: 2779143910.1080/17474086.2016.1254546)
Souza-Fonseca-Guimaraes, F., Adib-Conquy, M. & Cavaillon, J. M. Natural killer (NK) cells in antibacterial innate immunity: angels or devils? Mol. Med. 18, 270–285 (2012). (PMID: 2210560610.2119/molmed.2011.00201)
Shmeleva, E. V. & Colucci, F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol. 14, 991–1005 (2021). (PMID: 33903735807184410.1038/s41385-020-00374-3)
Crespo, Â. C. et al. Decidual NK Cells transfer granulysin to selectively kill bacteria in trophoblasts. Cell 182, 1125–1139.e1118 (2020). (PMID: 32822574748417910.1016/j.cell.2020.07.019)
Lemire, P., Galbas, T., Thibodeau, J. & Segura, M. Natural killer cell functions during the innate immune response to pathogenic streptococci. Front. Microbiol. 8, 1196 (2017). (PMID: 28706510548969410.3389/fmicb.2017.01196)
Clark, S. E. et al. Bacterial manipulation of NK cell regulatory activity increases susceptibility to listeria monocytogenes infection. PLoS Pathog. 12, e1005708 (2016). (PMID: 27295349490566310.1371/journal.ppat.1005708)
Harshan, K. V. & Gangadharam, P. R. In vivo depletion of natural killer cell activity leads to enhanced multiplication of Mycobacterium avium complex in mice. Infect. Immun. 59, 2818–2821 (1991). (PMID: 185599725809110.1128/iai.59.8.2818-2821.1991)
Fong, J. J. et al. Siglec-7 engagement by GBS β-protein suppresses pyroptotic cell death of natural killer cells. Proc. Natl. Acad. Sci. USA 115, 10410–10415 (2018). (PMID: 30254166618715410.1073/pnas.1804108115)
Kuperwaser, F. et al. Host inflammatory dynamics reveal placental immune modulation by Group B Streptococcus during pregnancy. Mol. Syst. Biol. 19, e11021 (2023). (PMID: 36744393999623610.15252/msb.202211021)
Doster, R. S., Sutton, J. A., Rogers, L. M., Aronoff, D. M. & Gaddy, J. A. Streptococcus agalactiae induces placental macrophages to release extracellular traps loaded with tissue remodeling enzymes via an oxidative burst-dependent mechanism. mBio 9, e02084–18 (2018). (PMID: 30459195624708210.1128/mBio.02084-18)
Carlin, A. F. et al. Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J. Exp. Med. 206, 1691–1699 (2009). (PMID: 19596804272216710.1084/jem.20090691)
Korir, M. L. et al. Streptococcus agalactiae cadD alleviates metal stress and promotes intracellular survival in macrophages and ascending infection during pregnancy. Nat. Commun. 13, 5392 (2022). (PMID: 36104331947451710.1038/s41467-022-32916-7)
MacIntyre, D. A. et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci. Rep. 5, 8988 (2015). (PMID: 25758319435568410.1038/srep08988)
Goltsman, D. S. A. et al. Metagenomic analysis with strain-level resolution reveals fine-scale variation in the human pregnancy microbiome. Genome Res. 28, 1467–1480 (2018). (PMID: 30232199616988710.1101/gr.236000.118)
Li, K. et al. Changes in the vaginal microbiome during pregnancy and the postpartum period in South African women: a longitudinal study. Reprod. Sci. 31, 275–287 (2024).
Younge, N. et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight 4, e127806 (2019). (PMID: 31479427679539810.1172/jci.insight.127806)
Theis, K. R. et al. No consistent evidence for microbiota in murine placental and fetal tissues. mSphere 5, e00933–19 (2020). (PMID: 321029447045391)
Greenberg, J. M. et al. Microbiota of the pregnant mouse: characterization of the bacterial communities in the oral cavity, lung, intestine, and vagina through culture and DNA sequencing. Microbiol. Spectr. 10, e0128622 (2022). (PMID: 3591652610.1128/spectrum.01286-22)
Mejia, M. E. et al. Human milk oligosaccharides reduce murine group b streptococcus vaginal colonization with minimal impact on the vaginal microbiota. mSphere 7, e0088521 (2022). (PMID: 3498631510.1128/msphere.00885-21)
Edgar, R. J. et al. Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. Nat. Chem. Biol. 15, 463–471 (2019). (PMID: 30936502647002310.1038/s41589-019-0251-4)
Patras, K. A., Doran K. S. A murine model of Group B streptococcus vaginal colonization. J. Vis. Exp. (2016).
Tunster, S. J. Genetic sex determination of mice by simplex PCR. Biol. Sex Differ. 8, 31 (2017).
Illumina. bcl2fastq: a proprietary Illumina software for the conversion of bcl files to basecalls (v2.20) [Computer software]. Illumina. https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html (2019).
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019). (PMID: 31375807760550910.1038/s41587-019-0201-4)
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656)
Illumina. bcl-convert: A proprietary Illumina software for the conversion of bcl files to basecalls (v4.0.3) [Computer software]. Illumina. https://support.illumina.com/sequencing/sequencing&#95;software/bcl-convert/downloads.html (2022).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 12, 323 (2011). (PMID: 10.1186/1471-2105-12-323)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
RStudio Team. RStudio: Integrated Development Environment for R (2022.12.0+353) [Computer software]. RStudio, PBC. http://www.rstudio.com/ (2022).
Blighe K., Rana S., Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling [Computer software]. Github. https://github.com/kevinblighe/EnhancedVolcano (2018).
Stephens, M. False discovery rates: a new deal. Biostatistics 18, 275–294 (2017). (PMID: 27756721)
Korotkevich, G. et al. Fast gene set enrichment analysis. bioRxiv, 060012 (2021).
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–1740 (2011). (PMID: 21546393310619810.1093/bioinformatics/btr260)
Consortium, U. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–d531 (2023). (PMID: 10.1093/nar/gkac1052)
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). (PMID: 3288110110.1002/pro.3943)
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016). (PMID: 27781170507569710.7717/peerj.2584)
Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014). (PMID: 25387460422815310.1186/s12915-014-0087-z)
Glassing, A., Dowd, S. E., Galandiuk, S., Davis, B. & Chiodini, R. J. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 8, 24 (2016). (PMID: 27239228488285210.1186/s13099-016-0103-7)
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018). (PMID: 30558668629800910.1186/s40168-018-0605-2)
Mercado-Evans V. et al. Gestational diabetes augments group B Streptococcus perinatal infection through disruptions in maternal immunity and the vaginal microbiota. Vicki-mercado-evans/Transcriptional-and-vaginal-microbial-analyses-in-a-mouse-model-of-gestational-diabetes-: V1.0.0. Zenodo (2024).
معلومات مُعتمدة: R21 AI149366 United States AI NIAID NIH HHS; P30 CA125123 United States CA NCI NIH HHS; R25 GM056929 United States GM NIGMS NIH HHS; P30 DK056338 United States DK NIDDK NIH HHS; U19 AI157981 United States AI NIAID NIH HHS; S10 RR024574 United States RR NCRR NIH HHS; T32 GM152777 United States GM NIGMS NIH HHS; R21 AI173448 United States AI NIAID NIH HHS; T32 GM136554 United States GM NIGMS NIH HHS; R01 DK128053 United States DK NIDDK NIH HHS; F31 AI167547 United States AI NIAID NIH HHS; F31 HD111236 United States HD NICHD NIH HHS; F31 AI167538 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Cytokines)
تواريخ الأحداث: Date Created: 20240203 Date Completed: 20240205 Latest Revision: 20240611
رمز التحديث: 20240611
مُعرف محوري في PubMed: PMC10838280
DOI: 10.1038/s41467-024-45336-6
PMID: 38310089
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-45336-6