Computational framework for the generation of one-dimensional vascular models accounting for uncertainty in networks extracted from medical images.

التفاصيل البيبلوغرافية
العنوان: Computational framework for the generation of one-dimensional vascular models accounting for uncertainty in networks extracted from medical images.
المؤلفون: Bartololo MA; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA., Taylor-LaPole AM; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA., Gandhi D; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.; Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA., Johnson A; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.; Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA., Li Y; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.; North Carolina School of Science and Mathematics, Durham, NC, USA., Slack E; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.; Department of Mathematics, Colorado State University, Fort Collins, CO, USA., Stevens I; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA., Turner Z; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA., Weigand JD; Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA., Puelz C; Division of Cardiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA., Husmeier D; School of Mathematics and Statistics, University of Glasgow, Glasgow, UK., Olufsen MS; Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.
المصدر: ArXiv [ArXiv] 2024 May 09. Date of Electronic Publication: 2024 May 09.
نوع المنشور: Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101759493 Publication Model: Electronic Cited Medium: Internet ISSN: 2331-8422 (Electronic) Linking ISSN: 23318422 NLM ISO Abbreviation: ArXiv Subsets: PubMed not MEDLINE
مستخلص: One-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical questions, including predictions of wave-reflection, shear stress, functional flow reserve, vascular resistance, and compliance. This model type can predict patient-specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty in in-vivo imaging introduces variability in network size and vessel dimensions, affecting hemodynamic predictions. Understanding the influence of variation in image-derived properties is essential to assess the fidelity of model predictions. Numerous programs exist to render three-dimensional surfaces and construct vessel centerlines. Still, there is no exact way to generate vascular trees from the centerlines while accounting for uncertainty in data. This study introduces an innovative framework employing statistical change point analysis to generate labeled trees that encode vessel dimensions and their associated uncertainty from medical images. To test this framework, we explore the impact of uncertainty in 1D hemodynamic predictions in a systemic and pulmonary arterial network. Simulations explore hemodynamic variations resulting from changes in vessel dimensions and segmentation; the latter is achieved by analyzing multiple segmentations of the same images. Results demonstrate the importance of accurately defining vessel radii and lengths when generating high-fidelity patient-specific hemodynamics models.
Competing Interests: Competing Interests The authors declare that they have no competing interests.
التعليقات: Update in: J Physiol. 2024 Aug;602(16):3929-3954. doi: 10.1113/JP286193. (PMID: 39075725)
References: J Med Phys. 2010 Jan;35(1):3-14. (PMID: 20177565)
Radiother Oncol. 1997 Jan;42(1):1-15. (PMID: 9132820)
J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D42-50. (PMID: 24355641)
J Biomech. 2000 Feb;33(2):137-44. (PMID: 10653026)
Am J Respir Crit Care Med. 2014 Aug 1;190(3):252-7. (PMID: 24869464)
J Biomech. 2020 Feb 13;100:109595. (PMID: 31911051)
Biomech Model Mechanobiol. 2023 Feb;22(1):357-377. (PMID: 36335184)
Heart Fail Rev. 2022 Nov;27(6):2083-2093. (PMID: 35587304)
Compr Physiol. 2012 Jan;2(1):675-709. (PMID: 23606929)
Ann Biomed Eng. 2017 Mar;45(3):525-541. (PMID: 27933407)
Int J Numer Method Biomed Eng. 2013 Jun;29(6):698-721. (PMID: 23653286)
J R Soc Interface. 2022 Feb;19(187):20210864. (PMID: 35193385)
Phys Med Biol. 2006 Jun 21;51(12):3251-67. (PMID: 16757875)
Sci Rep. 2018 Nov 22;8(1):17275. (PMID: 30467321)
Magn Reson Imaging. 2012 Nov;30(9):1323-41. (PMID: 22770690)
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):518-25. (PMID: 24579180)
Int J Numer Method Biomed Eng. 2022 Oct;38(10):e3639. (PMID: 35875875)
Comput Methods Programs Biomed. 2021 May;203:106021. (PMID: 33721602)
Acad Radiol. 2020 Oct;27(10):1449-1455. (PMID: 32741657)
Radiol Artif Intell. 2020 Jan 22;2(1):e190177. (PMID: 33939779)
Compr Physiol. 2016 Mar 15;6(2):975-1003. (PMID: 27065172)
Med Biol Eng Comput. 2008 Nov;46(11):1097-112. (PMID: 19002516)
Phys Med Biol. 2013 Sep 7;58(17):R187-220. (PMID: 23956328)
Am J Physiol Heart Circ Physiol. 2021 Aug 1;321(2):H318-H338. (PMID: 34142886)
J Gen Physiol. 1926 Jul 20;9(6):835-41. (PMID: 19872299)
Math Biosci. 2023 Oct;364:109056. (PMID: 37549786)
Int J Numer Method Biomed Eng. 2021 Nov;37(11):e3312. (PMID: 31953937)
Am J Physiol Heart Circ Physiol. 2015 Jul 1;309(1):H222-34. (PMID: 25888513)
J R Soc Interface. 2019 Oct 31;16(159):20190284. (PMID: 31575347)
Comput Methods Biomech Biomed Engin. 2006 Oct;9(5):273-88. (PMID: 17132614)
Annu Rev Biomed Eng. 2000;2:315-37. (PMID: 11701515)
Ann Biomed Eng. 2000 Nov-Dec;28(11):1281-99. (PMID: 11212947)
Biomech Model Mechanobiol. 2019 Jun;18(3):779-796. (PMID: 30635853)
Semin Cell Dev Biol. 2015 Feb;38:43-52. (PMID: 25455024)
Am J Physiol Heart Circ Physiol. 2016 Apr 1;310(7):H839-46. (PMID: 26825519)
Anaesthesia. 1976 Mar;31(2):273-5. (PMID: 779509)
Catheter Cardiovasc Interv. 2016 Jun;87(7):1244-55. (PMID: 27251470)
Stat Med. 2003 Oct 15;22(19):3055-71. (PMID: 12973787)
Int J Numer Method Biomed Eng. 2019 Nov;35(11):e3255. (PMID: 31469943)
PLoS Comput Biol. 2021 May 10;17(5):e1008881. (PMID: 33970900)
J R Soc Interface. 2020 Dec;17(173):20200886. (PMID: 33353505)
Biomech Model Mechanobiol. 2019 Feb;18(1):219-243. (PMID: 30284059)
J Biomech. 2016 Jan 25;49(2):205-15. (PMID: 26718061)
J Biomech. 1993 Oct;26(10):1237-47. (PMID: 8253828)
Phys Med Biol. 2006 Jul 7;51(13):R5-27. (PMID: 16790920)
Ann Transl Med. 2018 Sep;6(18):348. (PMID: 30370275)
J Cardiovasc Comput Tomogr. 2017 Jan - Feb;11(1):62-67. (PMID: 28017291)
Rev Cardiovasc Med. 2022 Nov 4;23(11):377. (PMID: 39076179)
Proc Inst Mech Eng H. 2020 Nov;234(11):1312-1329. (PMID: 32720558)
Bull Math Biol. 1977;39(5):509-20. (PMID: 890164)
J Gen Physiol. 1978 Dec;72(6):837-45. (PMID: 731200)
J Cereb Blood Flow Metab. 2012 Jun;32(6):952-67. (PMID: 22472613)
Front Physiol. 2020 Jan 23;10:1611. (PMID: 32038291)
Med Image Anal. 2009 Dec;13(6):819-45. (PMID: 19818675)
Biomech Model Mechanobiol. 2022 Feb;21(1):363-381. (PMID: 35037114)
J Biomech Eng. 2005 Jun;127(3):440-9. (PMID: 16060350)
Am J Physiol. 1992 Dec;263(6 Pt 2):H1770-8. (PMID: 1481902)
J Med Device. 2013 Dec;7(4):0409231-409231. (PMID: 24895523)
J Biomech. 2012 Oct 11;45(15):2499-505. (PMID: 22884968)
Eur J Radiol. 2022 May;150:110259. (PMID: 35334245)
Biomed Eng Online. 2011 Apr 26;10:33. (PMID: 21521508)
J Cardiovasc Transl Res. 2018 Apr;11(2):80-88. (PMID: 29512059)
Int J Numer Method Biomed Eng. 2021 Nov;37(11):e3242. (PMID: 31355521)
معلومات مُعتمدة: R01 HL147590 United States HL NHLBI NIH HHS
تواريخ الأحداث: Date Created: 20240205 Latest Revision: 20240815
رمز التحديث: 20240815
مُعرف محوري في PubMed: PMC10836077
PMID: 38313199
قاعدة البيانات: MEDLINE