دورية أكاديمية

A fused hybrid enzyme of 8-hydroxygeraniol oxidoreductase (8HGO) from Gardenia jasminoides and iridoid synthase (ISY) from Catharanthus roseus significantly enhances nepetalactol and iridoid production.

التفاصيل البيبلوغرافية
العنوان: A fused hybrid enzyme of 8-hydroxygeraniol oxidoreductase (8HGO) from Gardenia jasminoides and iridoid synthase (ISY) from Catharanthus roseus significantly enhances nepetalactol and iridoid production.
المؤلفون: Liu H; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China., Liang S; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China., Zhu M; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China., Shi W; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China., Xu C; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China., Wei W; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China., Zhan R; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. zhanrt@gzucm.edu.cn.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. zhanrt@gzucm.edu.cn.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. zhanrt@gzucm.edu.cn., Ma D; Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. madm@gzucm.edu.cn.; Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. madm@gzucm.edu.cn.; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. madm@gzucm.edu.cn.
المصدر: Planta [Planta] 2024 Feb 06; Vol. 259 (3), pp. 62. Date of Electronic Publication: 2024 Feb 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag [etc.] Country of Publication: Germany NLM ID: 1250576 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-2048 (Electronic) Linking ISSN: 00320935 NLM ISO Abbreviation: Planta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag [etc.]
مواضيع طبية MeSH: Catharanthus*/genetics , Gardenia* , Terpenes* , Bridged Bicyclo Compounds, Heterocyclic*, Oxidoreductases ; Iridoids
مستخلص: Main Conclusion: The operation of 8HGO-ISY fusion enzymes can increase nepetalactol flux to iridoid biosynthesis, and the Gj8HGO-CrISY expression in Gardenia jasminoides indicates that seco-iridoids and closed-ring iridoids share a nepetalactol pool. Nepetalactol is a common precursor of (seco)iridoids and their derivatives, which are a group of noncanonical monoterpenes. Functional characterization of an 8HGO (8-hydroxygeraniol oxidoreductase) from Catharanthus roseus, a seco-iridoids producing plant, has been reported; however, the 8HGO from G. jasminoides with plenty of closed-ring iridoids remains uninvestigated. In this work, a Gj8HGO was cloned and biochemically characterized. In addition, the relatively low production of nepetalactol in plants and engineered microbial host is likely to be attributed to the fact that Cr8HGO and CrISY (iridoid synthase) are substrate-promiscuous enzymes catalyzing unexpected substrates to the undesired products. Herein, a bifunctional enzyme consisting of an 8HGO fused to an ISY was designed for the proximity to the substrate and recycling of NADP + and NADPH cofactor to reduce the undesired intermediate in the synthesis of nepetalactol. Of four fusion enzymes (i.e., Gj8HGO-GjISY, Gj8HGO-GjISY2, Gj8HGO-GjISY4, and Gj8HGO-CrISY), interestingly, only the last one can enable cascade reaction to form cis-trans-nepetalactol. Furthermore, we establish a reliable Agrobacterium-mediated transformation system. The expression of Gj8HGO-CrISY in G. jasminoides led to a significant enhancement of nepetalactol production, about 19-fold higher than that in wild-type plants, which further resulted in the twofold to fivefold increase of total iridoids and representative iridoid such as geniposide, indicating that seco-iridoids in C. roseus and closed-ring iridoids in G. jasminoides share a nepetalactol pool. All results suggest that 8HGO and ISY can be manipulated to maximize metabolic flux for nepetalactol and iridoid production.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Allen DK, Libourel IG, Shachar-Hill Y (2009) Metabolic flux analysis in plants: coping with complexity. Plant Cell Environ 32(9):1241–1257. https://doi.org/10.1111/j.1365-3040.2009.01992.x. (PMID: 10.1111/j.1365-3040.2009.01992.x19422611)
Awadasseid ALW, Liu Z, Qiao C, Pang J, Zhang G, Luo Y (2020) Characterization of Camptotheca acuminata 10-hydroxygeraniol oxidoreductase and iridoid synthase and their application in biological preparation of nepetalactol in Escherichia coli featuring NADP(+)-NADPH cofactors recycling. Int J Biol MaCromol 162:1076–1085. (PMID: 10.1016/j.ijbiomac.2020.06.22332599240)
Billingsley JM, DeNicola AB, Barber JS, Tang MC, Horecka J, Chu A, Garg NK, Tang Y (2017) Engineering the biocatalytic selectivity of iridoid production in Saccharomyces cerevisiae. Metab Eng 44:117–125. https://doi.org/10.1016/j.ymben.2017.09.006. (PMID: 10.1016/j.ymben.2017.09.006289392785705256)
Campbell A, Bauchart P, Gold ND, Zhu Y, De Luca V, Martin VJ (2016) Engineering of a Nepetalactol-Producing Platform Strain of Saccharomyces cerevisiae for the Production of Plant Seco-Iridoids. ACS Synth Biol 5(5):405–414. https://doi.org/10.1021/acssynbio.5b00289. (PMID: 10.1021/acssynbio.5b0028926981892)
Chen LP, Li MX, Yang ZQ, Tao WD, Wang P, Tian XY, Li XL, Wang WG (2020) Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J Ethnopharmacol 257:28. https://doi.org/10.1016/j.jep.2020.112829. (PMID: 10.1016/j.jep.2020.112829)
Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508(2):215–220. https://doi.org/10.1016/s0014-5793(01)03045-9. (PMID: 10.1016/s0014-5793(01)03045-911718718)
Davies ME, Tsyplenkov D, Martin VJJ (2021) Engineering Yeast for De Novo Synthesis of the Insect Repellent Nepetalactone. ACS Synth Biol 10(11):2896–2903. https://doi.org/10.1021/acssynbio.1c00420. (PMID: 10.1021/acssynbio.1c0042034748704)
Dinda B, Debnath S, Harigaya Y (2007a) Naturally occurring iridoids. A review, part 1. Chem Pharm Bull 55(2):159–222. https://doi.org/10.1248/cpb.55.159. (PMID: 10.1248/cpb.55.159)
Dinda B, Debnath S, Harigaya Y (2007b) Naturally occurring secoiridoids and bioactivity of naturally occurring iridoids and secoiridoids. A review, part 2. Chem Pharm Bull 55(5):689–728. https://doi.org/10.1248/cpb.55.689. (PMID: 10.1248/cpb.55.689)
Dinda B, Debnath S, Banik R (2011) Naturally Occurring Iridoids and Secoiridoids. An Updated Review, Part 4. Chem Pharm Bull 59(7):803–833. https://doi.org/10.1248/cpb.59.803. (PMID: 10.1248/cpb.59.803)
Duan Y, Liu J, Du Y, Pei X, Li M (2021) Aspergillus oryzae Biosynthetic Platform for de Novo Iridoid Production. J Agric Food Chem 69(8):2501–2511. https://doi.org/10.1021/acs.jafc.0c06563. (PMID: 10.1021/acs.jafc.0c0656333599481)
Fan XF, Lin L, Cui BX, Zhao TM, Mao LH, Song Y, Wang XY, Feng HJ, Yu QX, Zhang J, Jiang K, Cao XC, Wang BM, Sun C (2020) Therapeutic potential of genipin in various acute liver injury, fulminant hepatitis, NAFLD and other non-cancer liver diseases: More friend than foe. Pharmacol Res 159:9. https://doi.org/10.1016/j.phrs.2020.104945. (PMID: 10.1016/j.phrs.2020.104945)
Fellows R, Russo CM, Silva CS, Lee SG, Jez JM, Chisholm JD, Zubieta C, Nanao MH (2018) A multisubstrate reductase from Plantago major: structure-function in the short chain reductase superfamily. Sci Rep 8(1):14796. https://doi.org/10.1038/s41598-018-32967-1. (PMID: 10.1038/s41598-018-32967-1302878976172241)
Galvez M, Martin-Cordero C, Houghton PJ, Ayuso MJ (2005) Antioxidant activity of methanol extracts obtained from Plantago species. J Agric Food Chem 53(6):1927–1933. https://doi.org/10.1021/jf048076s. (PMID: 10.1021/jf048076s15769115)
Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE (2012) An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 492(7427):138–142. https://doi.org/10.1038/nature11692. (PMID: 10.1038/nature1169223172143)
Hallahan DL, West JM, Wallsgrove RM, Smiley DW, Dawson GW, Pickett JA, Hamilton JG (1995) Purification and characterization of an acyclic monoterpene primary alcohol:NADP+ oxidoreductase from catmint (Nepeta racemosa). Arch Biochem Biophys 318(1):105–112. https://doi.org/10.1006/abbi.1995.1210. (PMID: 10.1006/abbi.1995.12107726550)
Hernandez Lozada NJ, Hong B, Wood JC, Caputi L, Basquin J, Chuang L, Kunert M, Rodriguez Lopez CE, Langley C, Zhao D, Buell CR, Lichman BR, O’Connor SE (2022) Biocatalytic routes to stereo-divergent iridoids. Nat Commun 13(1):4718. https://doi.org/10.1038/s41467-022-32414-w. (PMID: 10.1038/s41467-022-32414-w359534859372074)
Hu YM, Liu WD, Malwal SR, Zheng YY, Feng XX, Ko TP, Chen CC, Xu ZX, Liu MX, Han X, Gao J, Oldfield E, Guo RT (2015) Structures of Iridoid Synthase from Cantharanthus roseus with Bound NAD(+), NADPH, or NAD(+)/10-Oxogeranial: Reaction Mechanisms. Angew Chem-Int Edit 54(51):15478–15482. https://doi.org/10.1002/anie.201508310. (PMID: 10.1002/anie.201508310)
Ikeda H, Esaki N, Nakai S, Hashimoto K, Uesato S, Soda K, Fujita T (1991) Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols. J Biochem 109(2):341–347. (PMID: 1864846)
Jornvall H, Hoog JO, Persson B (1999) SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett 445(2–3):261–264. https://doi.org/10.1016/s0014-5793(99)00130-1. (PMID: 10.1016/s0014-5793(99)00130-110094468)
Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci CMLS 65(24):3895–3906. https://doi.org/10.1007/s00018-008-8588-y. (PMID: 10.1007/s00018-008-8588-y19011750)
Kim BH, Park KS, Chang IM (2009) Elucidation of Anti-inflammatory Potencies of Eucommia ulmoides Bark and Plantago asiatica Seeds. J Med Food 12(4):764–769. https://doi.org/10.1089/jmf.2008.1239. (PMID: 10.1089/jmf.2008.123919735174)
Kouda R, Yakushiji F (2020) Recent Advances in Iridoid Chemistry: Biosynthesis and Chemical Synthesis. Chem-Asian J 15(22):3771–3783. https://doi.org/10.1002/asia.202001034. (PMID: 10.1002/asia.20200103433016562)
Krithika R, Srivastava PL, Rani B, Kolet SP, Chopade M, Soniya M, Thulasiram HV (2015) Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis. Sci Rep 5:6. https://doi.org/10.1038/srep08258. (PMID: 10.1038/srep08258)
Lindner S, Geu-Flores F, Brase S, Sherden NH, O’Connor SE (2014) Conversion of Substrate Analogs Suggests a Michael Cyclization in Iridoid Biosynthesis. Chem Biol 21(11):1452–1456. https://doi.org/10.1016/j.chembiol.2014.09.010. (PMID: 10.1016/j.chembiol.2014.09.010254445514245709)
Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus (vol 5, 3606, 2014). Nat Commun 5:1. https://doi.org/10.1038/ncomms5175. (PMID: 10.1038/ncomms5175)
Monterrey DT, Ayuso-Fernandez I, Oroz-Guinea I, Garcia-Junceda E (2022) Design and biocatalytic applications of genetically fused multifunctional enzymes. Biotechnol Adv 60:108016. https://doi.org/10.1016/j.biotechadv.2022.108016. (PMID: 10.1016/j.biotechadv.2022.10801635781046)
Munkert J, Pollier J, Miettinen K, Van Moerkercke A, Payne R, Muller-Uri F, Burlat V, O’Connor SE, Memelink J, Kreis W, Goossens A (2015) Iridoid Synthase Activity Is Common among the Plant Progesterone 5 beta-Reductase Family. Mol Plant 8(1):136–152. https://doi.org/10.1016/j.molp.2014.11.005. (PMID: 10.1016/j.molp.2014.11.00525578278)
Navale GR, Sharma P, Said MS, Ramkumar S, Dharne MS, Thulasiram HV, Shinde SS (2019) Enhancing epi-cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and epi-cedrol synthase. Eng Life Sci 19(9):606–616. https://doi.org/10.1002/elsc.201900103. (PMID: 10.1002/elsc.201900103326250366999565)
Nguyen TD, O’Connor SE (2020) The Progesterone 5beta-Reductase/Iridoid Synthase Family: A Catalytic Reservoir for Specialized Metabolism across Land Plants. ACS Chem Biol 15(7):1780–1787. https://doi.org/10.1021/acschembio.0c00220. (PMID: 10.1021/acschembio.0c00220325010027467569)
Qin L, Zhu Y, Ding Z, Zhang X, Ye S, Zhang R (2016) Structure of iridoid synthase in complex with NADP(+)/8-oxogeranial reveals the structural basis of its substrate specificity. J Struct Biol 194(2):224–230. https://doi.org/10.1016/j.jsb.2016.02.010. (PMID: 10.1016/j.jsb.2016.02.01026868105)
Sandholu AS, Mujawar SP, Ramakrishnan K, Thulasiram HV, Kulkarni K (2020) Structural studies on 10-hydroxygeraniol dehydrogenase: A novel linear substrate-specific dehydrogenase from Catharanthus roseus. Proteins 88(9):1197–1206. https://doi.org/10.1002/prot.25891. (PMID: 10.1002/prot.2589132181958)
Schmidt K, Petersen J, Munkert J, Egerer-Sieber C, Hornig M, Muller YA, Kreis W (2018) PRISEs (progesterone 5beta-reductase and/or iridoid synthase-like 1,4-enone reductases): Catalytic and substrate promiscuity allows for realization of multiple pathways in plant metabolism. Phytochemistry 156:9–19. https://doi.org/10.1016/j.phytochem.2018.08.012. (PMID: 10.1016/j.phytochem.2018.08.01230172078)
Shanmugam MK, Shen HY, Tang FR, Arfuso F, Rajesh M, Wang LZ, Kumar AP, Bian JS, Goh BC, Bishayee A, Sethi G (2018) Potential role of genipin in cancer therapy. Pharmacol Res 133:195–200. https://doi.org/10.1016/j.phrs.2018.05.007. (PMID: 10.1016/j.phrs.2018.05.00729758279)
Xia Q, Dong JY, Li L, Wang Q, Liu YX, Wang QM (2018) Discovery of Glycosylated Genipin Derivatives as Novel Antiviral, Insecticidal, and Fungicidal Agents. J Agric Food Chem 66(6):1341–1348. https://doi.org/10.1021/acs.jafc.7b05861. (PMID: 10.1021/acs.jafc.7b0586129384669)
Xu C, Ye P, Wu QW, Liang SC, Wei WK, Yang JF, Chen WW, Zhan RT, Ma DM (2022) Identification and functional characterization of three iridoid synthases in Gardenia jasminoides. Planta 255(3):15. https://doi.org/10.1007/s00425-022-03824-3. (PMID: 10.1007/s00425-022-03824-3)
Ye P, Liang SC, Wang XM, Duan LX, Jiang FYY, Yang JF, Zhan RT, Ma DM (2019) Transcriptome analysis and targeted metabolic profiling for pathway elucidation and identification of a geraniol synthase involved in iridoid biosynthesis from Gardenia jasminoides. Ind Crop Prod 132:48–58. https://doi.org/10.1016/j.indcrop.2019.02.002. (PMID: 10.1016/j.indcrop.2019.02.002)
Yee DA, DeNicola AB, Billingsley JM, Creso JG, Subrahmanyam V, Tang Y (2019) Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab Eng 55:76–84. https://doi.org/10.1016/j.ymben.2019.06.004. (PMID: 10.1016/j.ymben.2019.06.004312263486717016)
معلومات مُعتمدة: 2020KJ148 the Guangdong Provincial Rural Revitalization Strategy; 2017GC010368 Guangdong Provincial Pearl River Talents Program
فهرسة مساهمة: Keywords: 8-Hydroxygeraniol oxidoreductase; Fusion enzymes; Gardenia jasminoides; Iridoid; Nepetalactol
المشرفين على المادة: EC 1.- (Oxidoreductases)
0 (8-hydroxygeraniol)
0 (nepetalactol)
0 (Iridoids)
0 (Terpenes)
0 (Bridged Bicyclo Compounds, Heterocyclic)
تواريخ الأحداث: Date Created: 20240206 Date Completed: 20240207 Latest Revision: 20240222
رمز التحديث: 20240222
DOI: 10.1007/s00425-023-04287-w
PMID: 38319463
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-2048
DOI:10.1007/s00425-023-04287-w