دورية أكاديمية

Spatial MS multiomics on clinical prostate cancer tissues.

التفاصيل البيبلوغرافية
العنوان: Spatial MS multiomics on clinical prostate cancer tissues.
المؤلفون: Truong JXM; The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.; South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia., Rao SR; The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia., Ryan FJ; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia., Lynn DJ; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, 5042, Australia., Snel MF; The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia., Butler LM; The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia.; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.; Freemasons Centre for Male Health and Wellbeing, University of Adelaide, North Terrace, Adelaide, South Australia, 5000, Australia.; South Australian immunoGENomics Cancer Institute (SAiGENCI), North Terrace, Adelaide, South Australia, 5000, Australia., Trim PJ; The University of Adelaide, North Terrace, Adelaide, SA, 5000, Australia. Paul.Trim@sahmri.com.; South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia. Paul.Trim@sahmri.com.
المصدر: Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2024 Mar; Vol. 416 (7), pp. 1745-1757. Date of Electronic Publication: 2024 Feb 07.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Heidelberg : Springer-Verlag, 2002-
مواضيع طبية MeSH: Multiomics* , Prostatic Neoplasms*, Male ; Humans ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods ; Laser Capture Microdissection ; Phosphatidylcholines/metabolism
مستخلص: Mass spectrometry (MS) and MS imaging (MSI) are used extensively for both the spatial and bulk characterization of samples in lipidomics and proteomics workflows. These datasets are typically generated independently due to different requirements for sample preparation. However, modern omics technologies now provide higher sample throughput and deeper molecular coverage, which, in combination with more sophisticated bioinformatic and statistical pipelines, make generating multiomics data from a single sample a reality. In this workflow, we use spatial lipidomics data generated by matrix-assisted laser desorption/ionization MSI (MALDI-MSI) on prostate cancer (PCa) radical prostatectomy cores to guide the definition of tumor and benign tissue regions for laser capture microdissection (LCM) and bottom-up proteomics all on the same sample and using the same mass spectrometer. Accurate region of interest (ROI) mapping was facilitated by the SCiLS region mapper software and dissected regions were analyzed using a dia-PASEF workflow. A total of 5525 unique protein groups were identified from all dissected regions. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), a lipid remodelling enzyme, was significantly enriched in the dissected regions of cancerous epithelium (CE) compared to benign epithelium (BE). The increased abundance of this protein was reflected in the lipidomics data with an increased ion intensity ratio for pairs of phosphatidylcholines (PC) and lysophosphatidylcholines (LPC) in CE compared to BE.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
References: Shuken SR. An introduction to mass spectrometry-based proteomics. J Proteome Res. 2023;22(7):2151–71. (PMID: 3726011810.1021/acs.jproteome.2c00838)
Hsu FF. Mass spectrometry-based shotgun lipidomics - a critical review from the technical point of view. Anal Bioanal Chem. 2018;410(25):6387–409. (PMID: 30094786619512410.1007/s00216-018-1252-y)
Zhu S, Chen J, Zeng H. Our current understanding of the heterogeneity in prostate cancer and renal cell carcinoma. J Clin Med. 2023;12(4):1526. (PMID: 36836061996200010.3390/jcm12041526)
Djambazova KV, Klein DR, Migas LG, Neumann EK, Rivera ES, Van de Plas R, et al. Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. Anal Chem. 2020;92(19):13290–7. (PMID: 3280852310.1021/acs.analchem.0c02520)
Mutuku SM, Trim PJ, Prabhala BK, Irani S, Bremert KL, Logan JM, et al. Evaluation of small molecule drug uptake in patient-derived prostate cancer explants by mass spectrometry. Sci Rep. 2019;9(1):15008. (PMID: 31628408680220610.1038/s41598-019-51549-3)
Guo G, Papanicolaou M, Demarais NJ, Wang Z, Schey KL, Timpson P, et al. Automated annotation and visualisation of high-resolution spatial proteomic mass spectrometry imaging data using HIT-MAP. Nat Commun. 2021;12(1):3241. (PMID: 34050164816380510.1038/s41467-021-23461-w)
Huang P, Kong Q, Gao W, Chu B, Li H, Mao Y, et al. Spatial proteome profiling by immunohistochemistry-based laser capture microdissection and data-independent acquisition proteomics. Anal Chim Acta. 2020;1127:140–8. (PMID: 3280011710.1016/j.aca.2020.06.049)
He J, Zhu J, Liu Y, Wu J, Nie S, Heth JA, et al. Immunohistochemical staining, laser capture microdissection, and filter-aided sample preparation-assisted proteomic analysis of target cell populations within tissue samples. Electrophoresis. 2013;34(11):1627–36. (PMID: 23436586376662910.1002/elps.201200566)
Tan WCC, Nerurkar SN, Cai HY, Ng HHM, Wu D, Wee YTF, et al. Overview of multiplex immunohistochemistry/immunofluorescence techniques in the era of cancer immunotherapy. Cancer Commun (Lond). 2020;40(4):135–53. (PMID: 3230158510.1002/cac2.12023)
Dilillo M, Pellegrini D, Ait-Belkacem R, de Graaf EL, Caleo M, McDonnell LA. Mass spectrometry imaging, laser capture microdissection, and LC-MS/MS of the same tissue section. J Proteome Res. 2017;16(8):2993–3001. (PMID: 2864807910.1021/acs.jproteome.7b00284)
Dewez F, Martin-Lorenzo M, Herfs M, Baiwir D, Mazzucchelli G, De Pauw E, et al. Precise co-registration of mass spectrometry imaging, histology, and laser microdissection-based omics. Anal Bioanal Chem. 2019;411(22):5647–53. (PMID: 31263919670427610.1007/s00216-019-01983-z)
Mezger STP, Mingels AMA, Soulié M, Peutz-Kootstra CJ, Bekers O, Mulder P, et al. Protein alterations in cardiac ischemia/reperfusion revealed by spatial-omics. Int J Mol Sci. 2022;23(22):13847. (PMID: 36430335969227610.3390/ijms232213847)
Mezger STP, Mingels AMA, Bekers O, Heeren RMA, Cillero-Pastor B. Mass spectrometry spatial-omics on a single conductive slide. Anal Chem. 2021;93(4):2527–33. (PMID: 33412004785992810.1021/acs.analchem.0c04572)
Dewez F, Oejten J, Henkel C, Hebeler R, Neuweger H, De Pauw E, et al. MS imaging-guided microproteomics for spatial omics on a single instrument. Proteomics (Weinheim). 2020;20(23):e1900369-n/a. (PMID: 10.1002/pmic.201900369)
Claes BSR, Krestensen KK, Yagnik G, Grgic A, Kuik C, Lim MJ, et al. MALDI-IHC-guided in-depth spatial proteomics: targeted and untargeted MSI combined. Anal chem (Washington). 2023;95(4):2329–38. (PMID: 10.1021/acs.analchem.2c04220)
Longuespée R, Alberts D, Baiwir D, Mazzucchelli G, Smargiasso N, De Pauw E. MALDI imaging combined with laser microdissection-based microproteomics for protein identification: application to intratumor heterogeneity studies. Methods in molecular biology (Clifton, NJ). 2018;1788:297–312. (PMID: 10.1007/7651_2017_114)
Alberts D, Pottier C, Smargiasso N, Baiwir D, Mazzucchelli G, Delvenne P, et al. MALDI imaging-guided microproteomic analyses of heterogeneous breast tumors—a pilot study. Proteomics Clin Appl. 2018;12(1):1700062. (PMID: 10.1002/prca.201700062)
Litwin MS, Tan H-J. The diagnosis and treatment of prostate cancer: a review. JAMA, J Am Med Assoc. 2017;317(24):2532–42. (PMID: 10.1001/jama.2017.7248)
Zadra G, Ribeiro CF, Chetta P, Ho Y, Cacciatore S, Gao X, et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2019;116(2):631–40. (PMID: 3057831910.1073/pnas.1808834116)
Swinnen JV, Esquenet M, Goossens K, Heyns W, Verhoeven G. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Can Res. 1997;57(6):1086–90.
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2(8):1896–906. (PMID: 1770320110.1038/nprot.2007.261)
Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic acids research. 2009;37(suppl-2):W652–60. (PMID: 19429898270387810.1093/nar/gkp356)
Scherl A, Zimmermann-Ivol CG, Dio JD, Vaezzadeh AR, Binz P-A, Amez-Droz M, et al. Gold coating of non-conductive membranes before matrix-assisted laser desorption/ionization tandem mass spectrometric analysis prevents charging effect. Rapid Commun Mass Spectrom. 2005;19(5):605–10. (PMID: 1568568310.1002/rcm.1831)
Liotta LA, Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, et al. Laser-capture microdissection. Nat Protoc. 2006;1(2):586–603. (PMID: 1740628610.1038/nprot.2006.85)
Andersen MK, Høiem TS, Claes BSR, Balluff B, Martin-Lorenzo M, Richardsen E, et al. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab. 2021;9(1):9. (PMID: 33514438784714410.1186/s40170-021-00242-z)
Goto T, Terada N, Inoue T, Kobayashi T, Nakayama K, Okada Y, et al. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. Prostate. 2015;75(16):1821–30. (PMID: 2633278610.1002/pros.23088)
Wang X, Han J, Hardie DB, Yang J, Pan J, Borchers CH. Metabolomic profiling of prostate cancer by matrix assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry imaging using matrix coating assisted by an electric field (MCAEF). Biochim Biophys Acta. 2017;1865(7):755–67. (PMID: 10.1016/j.bbapap.2016.12.012)
Eiersbrock FB, Orthen JM, Soltwisch J. Validation of MALDI-MS imaging data of selected membrane lipids in murine brain with and without laser postionization by quantitative nano-HPLC-MS using laser microdissection. Anal Bioanal Chem. 2020;412(25):6875–86. (PMID: 32712813749602010.1007/s00216-020-02818-y)
Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Dis. 2021;24(3):697–717. (PMID: 33820953838462210.1038/s41391-021-00340-5)
Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB, et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res. 2006;66(8):4011–9. (PMID: 1661872010.1158/0008-5472.CAN-05-3055)
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA. 2004;101(25):9309–14. (PMID: 1518467743897310.1073/pnas.0401994101)
Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM, et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet. 2007;39(1):41–51. (PMID: 1717304810.1038/ng1935)
Bergholz J, Xiao Z-X. Role of p63 in development, tumorigenesis and cancer progression. Cancer Microenviron. 2012;5(3):311–22. (PMID: 22847008346005110.1007/s12307-012-0116-9)
Melino G. p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death Differ. 2011;18(9):1487–99. (PMID: 21760596317843110.1038/cdd.2011.81)
Rathod S, Jaiswal D, Bindu R. Diagnostic utility of triple antibody (AMACR, HMWCK and P63) stain in prostate neoplasm. J Family Med Prim Care. 2019;8(8):2651–5. (PMID: 31548949675382710.4103/jfmpc.jfmpc_432_19)
Butler L, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev. 2020.
Vanauberg D, Schulz C, Lefebvre T. Involvement of the pro-oncogenic enzyme fatty acid synthase in the hallmarks of cancer: a promising target in anti-cancer therapies. Oncogenesis (New York, NY). 2023;12(1):16.
Yu Y, Nie Q, Wang Z, Di Y, Chen X, Ren K. Targeting acetyl-CoA carboxylase 1 for cancer therapy. Front Pharmacol. 2023;14:1129010. (PMID: 36843935995010310.3389/fphar.2023.1129010)
Han C, Yu G, Mao Y, Song S, Li L, Zhou L, et al. LPCAT1 enhances castration resistant prostate cancer progression via increased mRNA synthesis and PAF production. PLoS ONE. 2020;15(11): e0240801. (PMID: 33137125760567810.1371/journal.pone.0240801)
Sun Q, Fu C, Liu J, Li S, Zheng J. Knockdown of LPCAT1 repressed hepatocellular carcinoma growth and invasion by targeting S100A11. Ann Clin Lab Sci. 2023;53(2):212–21. (PMID: 37094849)
Moessinger C, Klizaite K, Steinhagen A, Philippou-Massier J, Shevchenko A, Hoch M, et al. Two different pathways of phosphatidylcholine synthesis, the Kennedy Pathway and the Lands Cycle, differentially regulate cellular triacylglycerol storage. BMC cell biology. 2014;15(1):43. (PMID: 25491198429382510.1186/s12860-014-0043-3)
Grupp K, Sanader S, Sirma H, Simon R, Koop C, Prien K, et al. High lysophosphatidylcholine acyltransferase 1 expression independently predicts high risk for biochemical recurrence in prostate cancers. Mol Oncol. 2013;7(6):1001–11. (PMID: 23941784552844610.1016/j.molonc.2013.07.009)
Zhou X, Lawrence TJ, He Z, Pound CR, Mao J, Bigler SA. The expression level of lysophosphatidylcholine acyltransferase 1 (LPCAT1) correlates to the progression of prostate cancer. Exp Mol Pathol. 2012;92(1):105–10. (PMID: 2210125810.1016/j.yexmp.2011.11.001)
Zhao X, Liang J, Chen Z, Jian R, Qian Y, Wang Y, et al. sn-1 Specificity of lysophosphatidylcholine acyltransferase-1 revealed by a mass spectrometry-based assay. Angew Chem (International ed). 2023;62(6):e202215556. (PMID: 10.1002/anie.202215556)
Nakanishi H, Shindou H, Hishikawa D, Harayama T, Ogasawara R, Suwabe A, et al. Cloning and characterization of mouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase 1 (LPCAT1). Expression in alveolar type II cells and possible involvement in surfactant production. J Biol Chem. 2006;281(29):20140–7. (PMID: 1670497110.1074/jbc.M600225200)
Truong JXM, Spotbeen X, White J, Swinnen JV, Butler LM, Snel MF, et al. Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids. Anal Bioanal Chem. 2021;413(10):2695–708. (PMID: 3356492510.1007/s00216-020-03128-z)
Young RSE, Claes BSR, Bowman AP, Williams ED, Shepherd B, Perren A, et al. Isomer-resolved imaging of prostate cancer tissues reveals specific lipid unsaturation profiles associated with lymphocytes and abnormal prostate epithelia. Front Endocrinol. 2021;12:689600. (PMID: 10.3389/fendo.2021.689600)
فهرسة مساهمة: Keywords: Laser capture microdissection; Lipidomics; MALDI imaging; Multiomics; Prostate cancer; Proteomics
المشرفين على المادة: 0 (Phosphatidylcholines)
تواريخ الأحداث: Date Created: 20240207 Date Completed: 20240229 Latest Revision: 20240313
رمز التحديث: 20240313
DOI: 10.1007/s00216-024-05178-z
PMID: 38324070
قاعدة البيانات: MEDLINE
الوصف
تدمد:1618-2650
DOI:10.1007/s00216-024-05178-z