دورية أكاديمية

Improved prediction of clinical pregnancy using artificial intelligence with enhanced inner cell mass and trophectoderm images.

التفاصيل البيبلوغرافية
العنوان: Improved prediction of clinical pregnancy using artificial intelligence with enhanced inner cell mass and trophectoderm images.
المؤلفون: Kim HM; Kai Health, Seoul, South Korea., Ko T; Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, South Korea.; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.; CMC Institute for Basic Medical Science, The Catholic Medical Center of The Catholic University of Korea, Seoul, South Korea., Kang H; Kai Health, Seoul, South Korea., Choi S; M Fertility Clinic, Seoul, South Korea., Park JH; Miraewaheemang Hospital, IVF Clinic, Seoul, South Korea., Chung MK; Seoul Rachel Fertility Center, IVF Clinic, Seoul, South Korea., Kim M; Department of Obstetrics & Gynecology, Ajou University School of Medicine, Suwon, South Korea., Kim NY; HI Fertility Center, Seoul, South Korea., Lee HJ; Kai Health, Seoul, South Korea. hyejunlee@gmail.com.
المصدر: Scientific reports [Sci Rep] 2024 Feb 08; Vol. 14 (1), pp. 3240. Date of Electronic Publication: 2024 Feb 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Blastocyst Inner Cell Mass* , Preimplantation Diagnosis*/methods, Pregnancy ; Female ; Humans ; Retrospective Studies ; Artificial Intelligence ; Blastocyst
مستخلص: This study aimed to assess the performance of an artificial intelligence (AI) model for predicting clinical pregnancy using enhanced inner cell mass (ICM) and trophectoderm (TE) images. In this retrospective study, we included static images of 2555 day-5-blastocysts from seven in vitro fertilization centers in South Korea. The main outcome of the study was the predictive capability of the model to detect clinical pregnancies (gestational sac). Compared with the original embryo images, the use of enhanced ICM and TE images improved the average area under the receiver operating characteristic curve for the AI model from 0.716 to 0.741. Additionally, a gradient-weighted class activation mapping analysis demonstrated that the enhanced image-trained AI model was able to extract features from crucial areas of the embryo in 99% (506/512) of the cases. Particularly, it could extract the ICM and TE. In contrast, the AI model trained on the original images focused on the main areas in only 86% (438/512) of the cases. Our results highlight the potential efficacy of using ICM- and TE-enhanced embryo images when training AI models to predict clinical pregnancy.
(© 2024. The Author(s).)
References: Wade, J. J., MacLachlan, V. & Kovacs, G. The success rate of IVF has significantly improved over the last decade. Aust. N. Z. J. Obstet. Gynaecol. 55, 473–476 (2015). (PMID: 10.1111/ajo.1235626174052)
De Mouzon, J. et al. Assisted reproductive technology in Europe, 2006: Results generated from European registers by ESHRE. Hum. Reprod. 25, 1851–1862 (2010). (PMID: 10.1093/humrep/deq12420570973)
Meldrum, D. R., Silverberg, K. M., Bustillo, M. & Stokes, L. Success rate with repeated cycles of in vitro fertilization-embryo transfer. Fertil. Steril. 69, 1005–1009 (1998). (PMID: 10.1016/S0015-0282(98)00083-19627284)
Gardner, D. K., Lane, M. & Schoolcraft, W. B. Culture and transfer of viable blastocysts: A feasible proposition for human IVF. Hum. Reprod. 15(Suppl 6), 9–23 (2000). (PMID: 11261487)
Balaban, B. et al. The Istanbul consensus workshop on embryo assessment: Proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283 (2011). (PMID: 10.1093/humrep/der037)
Gardner, D. K. & Schoolcraft, W. B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol. 11, 307–311 (1999). (PMID: 10.1097/00001703-199906000-0001310369209)
Piliszek, A., Grabarek, J. B., Frankenberg, S. R. & Plusa, B. Cell fate in animal and human blastocysts and the determination of viability. Mol. Hum. Reprod. 22, 681–690 (2016). (PMID: 10.1093/molehr/gaw00226769259)
Storr, A., Venetis, C. A., Cooke, S., Kilani, S. & Ledger, W. Inter-observer and intra-observer agreement between embryologists during selection of a single Day 5 embryo for transfer: A multicenter study. Hum. Reprod. 32, 307–314 (2017). (PMID: 10.1093/humrep/dew33028031323)
Bormann, C. L. et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil. Steril. 113, 781-787.e1 (2020). (PMID: 10.1016/j.fertnstert.2019.12.004322288807583085)
Ver Milyea, M. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 35, 770–784 (2021). (PMID: 10.1093/humrep/deaa013)
Crawford, N. M. & Steiner, A. Z. Age-related infertility. Obstet. Gynecol. Clin. North Am. 42, 15–25 (2015). (PMID: 10.1016/j.ogc.2014.09.00525681837)
Qiu, J., Li, P., Dong, M., Xin, X. & Tan, J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: A machine learning method. J. Transl. Med. 17, 1–8 (2019). (PMID: 10.1186/s12967-019-2062-5)
Loewke, K. et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos. Fertil. Steril. 117, 528–535 (2022). (PMID: 10.1016/j.fertnstert.2021.11.02234998577)
Chua, S. J. et al. Age-related natural fertility outcomes in women over 35 years: A systematic review and individual participant data meta-analysis. Hum. Reprod. 35, 1808–1820 (2020). (PMID: 10.1093/humrep/deaa12932696041)
Miyagi, Y., Habara, T., Hirata, R. & Hayashi, N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod. Med. Biol. 18, 190 (2019). (PMID: 10.1002/rmb2.12266309966836452012)
Ai, J. et al. The morphology of inner cell mass is the strongest predictor of live birth after a frozen-thawed single embryo transfer. Front. Endocrinol. (Lausanne) 12, 1–10 (2021). (PMID: 10.3389/fendo.2021.621221)
Bakkensen, J. B. et al. Association between blastocyst morphology and pregnancy and perinatal outcomes following fresh and cryopreserved embryo transfer. J. Assist. Reprod. Genet. 36, 2315–2324 (2019). (PMID: 10.1007/s10815-019-01580-0315120496885471)
Chen, X. et al. Trophectoderm morphology predicts outcomes of pregnancy in vitrified-warmed single-blastocyst transfer cycle in a Chinese population. J. Assist. Reprod. Genet. 31, 1475–1481 (2014). (PMID: 10.1007/s10815-014-0317-x251231284389933)
Irani, M. et al. Morphologic grading of euploid blastocysts influences implantation and ongoing pregnancy rates. Fertil. Steril. 107, 664–670 (2017). (PMID: 10.1016/j.fertnstert.2016.11.01228069172)
Alakwaa, W., Nassef, M. & Badr, A. Lung cancer detection and classification with 3D convolutional neural network (3D-CNN). Int. J. Biol. Biomed. Eng. 11, 66–73 (2017).
Min Kim, H., Ko, T., Young Choi, I. & Myong, J. P. Asbestosis diagnosis algorithm combining the lung segmentation method and deep learning model in computed tomography image. Int. J. Med. Inform. 158, 104667 (2022). (PMID: 10.1016/j.ijmedinf.2021.104667)
Richardson, A. et al. Accuracy of first-trimester ultrasound in diagnosis of intrauterine pregnancy prior to visualization of the yolk sac: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 46, 142–149 (2015). (PMID: 10.1002/uog.1472525393076)
Richter, K. S., Harris, D. C., Daneshmand, S. T. & Shapiro, B. S. Quantitative grading of a human blastocyst: Optimal inner cell mass size and shape. Fertil. Steril. 76, 1157–1167 (2001). (PMID: 10.1016/S0015-0282(01)02870-911730744)
Xu, M., Yoon, S., Fuentes, A. & Park, D. S. A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognit. 137, 109347 (2023). (PMID: 10.1016/j.patcog.2023.109347)
Guan, Q. et al. Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Comput. Biol. Med. 145, 105444 (2022). (PMID: 10.1016/j.compbiomed.2022.10544435421795)
Singh, P. & Manure, A. Introduction to TensorFlow 2.0. Learn TensorFlow 2.0 1–24. https://doi.org/10.1007/978-1-4842-5558-2_1 (2020).
Huang, Y., Li, W., Macheret, F., Gabriel, R. A. & Ohno-Machado, L. A tutorial on calibration measurements and calibration models for clinical prediction models. J. Am. Med. Inform. Assoc. 27, 621–633 (2021). (PMID: 10.1093/jamia/ocz228)
Jiang, X., Osl, M., Kim, J. & Ohno-Machado, L. Calibrating predictive model estimates to support personalized medicine. J. Am. Med. Inform. Assoc. 19, 263–274 (2012). (PMID: 10.1136/amiajnl-2011-00029121984587)
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017 2017, 2261–2269 (2017).
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc. 1–14 (2015).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proc. IEEE Comput Soc. Conf. Comput. Vis. Pattern Recognit. 2016, 770–778 (2016).
Zhang, Q. et al. A comparative study of attention mechanism based deep learning methods for bladder tumor segmentation. Int. J. Med. Inform. 171, 104984 (2023). (PMID: 10.1016/j.ijmedinf.2023.10498436634475)
Hosseinzadeh Kassani, S., Hosseinzadeh Kassani, P., Wesolowski, M. J., Schneider, K. A. & Deters, R. Deep transfer learning based model for colorectal cancer histopathology segmentation: A comparative study of deep pre-trained models. Int. J. Med. Inform. 159, 104669 (2022). (PMID: 10.1016/j.ijmedinf.2021.10466934979435)
Bayramoglu, N., Nieminen, M. T. & Saarakkala, S. Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis. Int. J. Med. Inform. 157, 104627 (2022). (PMID: 10.1016/j.ijmedinf.2021.10462734773800)
Albert, B. A. Deep learning from limited training data: Novel segmentation and ensemble algorithms applied to automatic melanoma diagnosis. IEEE Access 8, 31254–31269 (2020). (PMID: 10.1109/ACCESS.2020.2973188)
Rojas Domínguez, A. & Nandi, A. K. Toward breast cancer diagnosis based on automated segmentation of masses in mammograms. Pattern Recognit. 42, 1138–1148 (2009). (PMID: 10.1016/j.patcog.2008.08.006)
Hu, X., Chu, L., Pei, J., Liu, W. & Bian, J. Model complexity of deep learning: A survey. Knowl. Inf. Syst. 63, 2585–2619 (2021). (PMID: 10.1007/s10115-021-01605-0)
Liu, H. et al. Development and evaluation of a live birth prediction model for evaluating human blastocysts from a retrospective study. Elife 12, 86662 (2023). (PMID: 10.7554/eLife.83662)
Treff, N. R. & Marin, D. The, “mosaic” embryo: Misconceptions and misinterpretations in preimplantation genetic testing for aneuploidy. Fertil. Steril. 116, 1205–1211 (2021). (PMID: 10.1016/j.fertnstert.2021.06.02734304887)
Lee, C. I. et al. End-to-end deep learning for recognition of ploidy status using time-lapse videos. J. Assist. Reprod. Genet. 38, 1655–1663 (2021). (PMID: 10.1007/s10815-021-02228-8340218328324635)
Diakiw, S. M. et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF. Hum. Reprod. 37, 1746–1759 (2022). (PMID: 10.1093/humrep/deac131356743129340116)
Barnes, J. et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: A retrospective model development and validation study. Lancet Digit. Health 5, e28–e40 (2023). (PMID: 10.1016/S2589-7500(22)00213-83654347510193126)
تواريخ الأحداث: Date Created: 20240208 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
مُعرف محوري في PubMed: PMC10853203
DOI: 10.1038/s41598-024-52241-x
PMID: 38331914
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-52241-x