دورية أكاديمية

Contribution of climate change to the spatial expansion of West Nile virus in Europe.

التفاصيل البيبلوغرافية
العنوان: Contribution of climate change to the spatial expansion of West Nile virus in Europe.
المؤلفون: Erazo D; Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium. diana.erazo.quintero@ulb.be., Grant L; Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium., Ghisbain G; Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium.; Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium., Marini G; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy., Colón-González FJ; Data for Science and Health, Wellcome Trust, London, UK., Wint W; Environmental Research Group Oxford Ltd, Department of Biology, Mansfield Road, Oxford, OX1 3SZ, UK., Rizzoli A; Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy., Van Bortel W; Unit Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.; Outbreak Research team, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium., Vogels CBF; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA., Grubaugh ND; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA., Mengel M; Department Transformation Pathways, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany., Frieler K; Department Transformation Pathways, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany., Thiery W; Department of Water and Climate, Vrije Universiteit Brussel, Brussels, Belgium., Dellicour S; Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium. simon.dellicour@ulb.be.; Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium. simon.dellicour@ulb.be.
المصدر: Nature communications [Nat Commun] 2024 Feb 08; Vol. 15 (1), pp. 1196. Date of Electronic Publication: 2024 Feb 08.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: West Nile virus* , West Nile Fever*/epidemiology , Culicidae*, Animals ; Humans ; Climate Change ; Europe/epidemiology
مستخلص: West Nile virus (WNV) is an emerging mosquito-borne pathogen in Europe where it represents a new public health threat. While climate change has been cited as a potential driver of its spatial expansion on the continent, a formal evaluation of this causal relationship is lacking. Here, we investigate the extent to which WNV spatial expansion in Europe can be attributed to climate change while accounting for other direct human influences such as land-use and human population changes. To this end, we trained ecological niche models to predict the risk of local WNV circulation leading to human cases to then unravel the isolated effect of climate change by comparing factual simulations to a counterfactual based on the same environmental changes but a counterfactual climate where long-term trends have been removed. Our findings demonstrate a notable increase in the area ecologically suitable for WNV circulation during the period 1901-2019, whereas this area remains largely unchanged in a no-climate-change counterfactual. We show that the drastic increase in the human population at risk of exposure is partly due to historical changes in population density, but that climate change has also been a critical driver behind the heightened risk of WNV circulation in Europe.
(© 2024. The Author(s).)
References: Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017). (PMID: 2836026810.1126/science.aai9214)
Semenza, J. C. & Paz, S. Climate change and infectious disease in Europe: impact, projection and adaptation. Lancet Reg. Health Eur. 9, 100230 (2021). (PMID: 34664039851315710.1016/j.lanepe.2021.100230)
Semenza, J. C. & Menne, B. Climate change and infectious diseases in Europe. Lancet Infect. Dis. 9, 365–375 (2009). (PMID: 1946747610.1016/S1473-3099(09)70104-5)
Tabachnick, W. J. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J. Exp. Biol. 213, 946–954 (2010). (PMID: 2019011910.1242/jeb.037564)
Paz, S. Climate change impacts on West Nile virus transmission in a global context. Philos. Trans. R. Soc. B 370, 20130561 (2015). (PMID: 10.1098/rstb.2013.0561)
Ebi, K. L., Lindgren, E., Suk, J. E. & Semenza, J. C. Adaptation to the infectious disease impacts of climate change. Climat. Change 118, 355–365 (2013). (PMID: 10.1007/s10584-012-0648-5)
Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ. Int. 86, 14–23 (2016). (PMID: 2647983010.1016/j.envint.2015.09.007)
Semenza, J. C., Rocklöv, J. & Ebi, K. L. Climate change and cascading risks from infectious disease. Infect. Dis. Ther. 11, 1371–1390 (2022). (PMID: 35585385933447810.1007/s40121-022-00647-3)
Giesen, C. et al. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health 16, 100478 (2023). (PMID: 373632461028803110.1016/j.onehlt.2022.100478)
Watts Burke, D., Harrison, B., Whitmire, R. & Nisalak, A. Effect of temperature on the vector efficiency of aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 36, 143–152 (1987). (PMID: 381287910.4269/ajtmh.1987.36.143)
Bayoh, M. N. & Lindsay, S. W. Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med. Vet. Entomol. 18, 174–179 (2004). (PMID: 1518924310.1111/j.0269-283X.2004.00495.x)
Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2, e1146 (2007). (PMID: 17987125206346110.1371/journal.pone.0001146)
Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl Acad. Sci. USA 108, 7460–7465 (2011). (PMID: 21502510308860810.1073/pnas.1101377108)
Lowe, R. et al. Nonlinear and delayed impacts of climate on dengue risk in Barbados: a modelling study. PLoS Med. 15, e1002613 (2018). (PMID: 30016319604990210.1371/journal.pmed.1002613)
Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019). (PMID: 31286630674431910.1111/ele.13335)
Reisen, W. K., Fang, Y. & Martinez, V. M. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 43, 309–317 (2006). (PMID: 1661961610.1093/jmedent/43.2.309)
Fouque, F. & Reeder, J. C. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Infect. Dis. Poverty 8, 51 (2019). (PMID: 31196187656742210.1186/s40249-019-0565-1)
Rocklöv, J. & Dubrow, R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483 (2020). (PMID: 32313242722382310.1038/s41590-020-0648-y)
Barrett, A. D. T. West Nile in Europe: an increasing public health problem. J.Travel Med. https://doi.org/10.1093/jtm/tay096 (2018).
Barzon, L. Ongoing and emerging arbovirus threats in Europe. J. Clin. Virol. 107, 38–47 (2018). (PMID: 3017640410.1016/j.jcv.2018.08.007)
Vogels, C., Göertz, G., Pijlman, G. & Koenraadt, C. J. Vector competence of European mosquitoes for West Nile virus. Emerg. Microbes Infect. 6, 1–13 (2017). (PMID: 10.1038/emi.2017.82)
Haba, Y. & McBride, L. Origin and status of Culex pipiens mosquito ecotypes. Curr. Biol. 32, R237–R246 (2022). (PMID: 35290776910867810.1016/j.cub.2022.01.062)
Tolsá-García, M. J., Wehmeyer, M. L., Lühken, R. & Roiz, D. Worldwide transmission and infection risk of mosquito vectors of West Nile, St. Louis encephalitis, Usutu and Japanese encephalitis viruses: a systematic review. Sci. Rep. 13, 308 (2023). (PMID: 36609450982298710.1038/s41598-022-27236-1)
Rudolph, K. E., Lessler, J., Moloney, R. M., Kmush, B. & Cummings, D. A. T. Incubation periods of mosquito-borne viral infections: a systematic review. Am. J. Trop. Med. Hyg. 90, 882–891 (2014). (PMID: 24639305401558210.4269/ajtmh.13-0403)
Petersen, L. R., Brault, A. C. & Nasci, R. S. West Nile virus: review of the literature. JAMA 310, 308 (2013). (PMID: 23860989456398910.1001/jama.2013.8042)
Castillo-Olivares, J. & Wood, J. West Nile virus infection of horses. Vet. Res. 35, 467–483 (2004). (PMID: 1523667710.1051/vetres:2004022)
Tsai, T., Popovici, F., Cernescu, C., Campbell, G. & Nedelcu, N. West Nile encephalitis epidemic in southeastern Romania. Lancet 352, 767–771 (1998). (PMID: 973728110.1016/S0140-6736(98)03538-7)
Lu, L. et al. West Nile virus spread in Europe: Phylogeographic pattern analysis and key drivers. PLoS Pathog. 20, e1011880 (2024).
Bakonyi, T. & Haussig, J. M. West Nile virus keeps on moving up in Europe. Eurosurveillance 25, 2001938 (2020).
Asnis, D. S., Conetta, R., Teixeira, A. A., Waldman, G. & Sampson, B. A. The West Nile virus outbreak of 1999 in New York: the flushing hospital experience. Clin. Infect. Dis. 30, 413–418 (2000). (PMID: 1072242110.1086/313737)
Marini, G., Manica, M., Delucchi, L., Pugliese, A. & Rosà, R. Spring temperature shapes West Nile virus transmission in Europe. Acta Trop. 215, 105796 (2021). (PMID: 3331007810.1016/j.actatropica.2020.105796)
Marcantonio, M. et al. Identifying the environmental conditions favouring West Nile virus outbreaks in Europe. PLoS ONE 10, e0121158 (2015). (PMID: 25803814437257610.1371/journal.pone.0121158)
Watts, M. J., Sarto, I., Monteys, V., Mortyn, P. G. & Kotsila, P. The rise of West Nile Virus in Southern and Southeastern Europe: a spatial–temporal analysis investigating the combined effects of climate, land use and economic changes. One Health 13, 100315 (2021). (PMID: 34485672840862510.1016/j.onehlt.2021.100315)
Farooq, Z. et al. European projections of West Nile virus transmission under climate change scenarios. One Health 16, 100509 (2023). (PMID: 373632331028805810.1016/j.onehlt.2023.100509)
Paz, S. Effects of climate change on vector-borne diseases: an updated focus on West Nile virus in humans. Emerg. Top. Life Sci. 3, 143–152 (2019). (PMID: 3352314410.1042/ETLS20180124)
Gates, M. C. & Boston, R. C. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006. Prev. Vet. Med. 89, 134–137 (2009). (PMID: 1918594110.1016/j.prevetmed.2008.12.004)
Hubálek, Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J. Wildl. Dis. 40, 639–659 (2004). (PMID: 1565008210.7589/0090-3558-40.4.639)
Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006). (PMID: 1662373310.1111/j.1461-0248.2006.00885.x)
Pongsiri, M. J. et al. Biodiversity loss affects global disease ecology. BioScience 59, 945–954 (2009). (PMID: 10.1525/bio.2009.59.11.6)
Allan, B. F. et al. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158, 699–708 (2009). (PMID: 1894179410.1007/s00442-008-1169-9)
Levine, R. S. et al. Avian species diversity and transmission of West Nile virus in Atlanta, Georgia. Parasit. Vectors 10, 62 (2017). (PMID: 28159002529196310.1186/s13071-017-1999-6)
O’Neill, B. et al. 2022: Key risks across sectors and regions. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2411–2538 (Cambridge University Press, 2022).
IPCC. Annex II: Glossary. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).
Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1 – counterfactual climate for impact attribution. Geosci. Model Dev. 14, 5269–5284 (2021). (PMID: 10.5194/gmd-14-5269-2021)
Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteor. Soc. 146, 1999–2049 (2020). (PMID: 10.1002/qj.3803)
Cucchi, M. et al. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth Syst. Sci. Data 12, 2097–2120 (2020). (PMID: 10.5194/essd-12-2097-2020)
Kim, H. Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions (Experiment 1). Data Integration and Analysis System (DIAS) https://doi.org/10.20783/DIAS.501 (2017).
Rust, H. W., Kruschke, T., Dobler, A., Fischer, M. & Ulbrich, U. Discontinuous daily temperatures in the WATCH forcing datasets. J. Hydrometeorol. 16, 465–472 (2015). (PMID: 10.1175/JHM-D-14-0123.1)
Slivinski, L. C. et al. Towards a more reliable historical reanalysis: improvements for version 3 of the Twentieth Century Reanalysis system. Q J. R. Meteorol. Soc. 145, 2876–2908 (2019). (PMID: 10.1002/qj.3598)
Slivinski, L. C. et al. An evaluation of the performance of the twentieth century reanalysis version 3. J. Clim. 34, 1417–1438 (2021). (PMID: 10.1175/JCLI-D-20-0505.1)
ECDC. Historical data by year - West Nile virus seasonal surveillance. European Centre for Disease Prevention and Control https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical (2019).
Paz, S. & Semenza, J. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—a review. IJERPH 10, 3543–3562 (2013). (PMID: 23939389377445310.3390/ijerph10083543)
Barzon, L. et al. Novel West Nile virus lineage 1a full genome sequences from human cases of infection in north-eastern Italy, 2011. Clin. Microbiol. Infect. 18, E541–E544 (2012). (PMID: 2300468510.1111/1469-0691.12001)
Papa, A. et al. Molecular detection and isolation of West Nile virus from a human case in northern Greece, 2013. N. Microbes N. Infect. 1, 30–31 (2013). (PMID: 10.1002/2052-2975.17)
Marini, G. et al. A quantitative comparison of West Nile virus incidence from 2013 to 2018 in Emilia-Romagna, Italy. PLoS Negl. Trop. Dis. 14, e0007953 (2020). (PMID: 31895933693990410.1371/journal.pntd.0007953)
Gorris, M. E. et al. Assessing the influence of climate on the spatial pattern of West Nile virus incidence in the United States. Environ. Health Perspect. 131, 047016 (2023). (PMID: 371042431013771210.1289/EHP10986)
Farooq, Z. et al. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. Lancet Reg. Health Eur. 17, 100370 (2022). (PMID: 35373173897163310.1016/j.lanepe.2022.100370)
Sofia, M. et al. West Nile virus occurrence and ecological niche modeling in wild bird species and mosquito vectors: an active surveillance program in the Peloponnese region of Greece. Microorganisms 10, 1328 (2022). (PMID: 35889046932005810.3390/microorganisms10071328)
IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).
Semenza, J. C. & Domanović, D. Blood supply under threat. Nat. Clim. Change 3, 432–435 (2013). (PMID: 10.1038/nclimate1867)
World Health Organization. WHO Review of IPCC Evidence 2022 [Advanced Version]. https://cdn.who.int/media/docs/default-source/climate-change/who-review-of-ipcc-evidence-2022-adv-version.pdf?sfvrsn=cce71a2c_3&download=true (2022).
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016). (PMID: 10.1088/1748-9326/11/8/084003)
Hurtt, G. C. et al. Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6. https://gmd.copernicus.org/preprints/gmd-2019-360/gmd-2019-360.pdf (2020).
Wint, W. G. R. et al. VectorNet: collaborative mapping of standardised distributions and surveillance for arthropod disease vectors in Europe and neighbouring countries. Eurosurveillance 28, 2200666 (2022).
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006). (PMID: 10.1111/j.2006.0906-7590.04596.x)
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J Anim. Ecology 77, 802–813 (2008).
Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. Package ‘dismo’. (2011).
Randin, C. F. et al. Are niche-based species distribution models transferable in space? J. Biogeogr. 33, 1689–1703 (2006). (PMID: 10.1111/j.1365-2699.2006.01466.x)
Valavi, R., Elith, J., Lahoz‐Monfort, J. J. & Guillera‐Arroita, G. blockCV: an r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol. Evol. 10, 225–232 (2019). (PMID: 10.1111/2041-210X.13107)
Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008). (PMID: 10.1111/j.1466-8238.2007.00358.x)
Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling: insights into the AUC. Glob. Ecol. Biogeogr. 21, 498–507 (2012). (PMID: 10.1111/j.1466-8238.2011.00683.x)
Jiménez-Valverde, A. Threshold-dependence as a desirable attribute for discrimination assessment: implications for the evaluation of species distribution models. Biodivers. Conserv. 23, 369–385 (2014). (PMID: 10.1007/s10531-013-0606-1)
Ghisbain, G. et al. Projected decline in European bumblebee populations in the twenty-first century. Nature https://doi.org/10.1038/s41586-023-06471-0 (2023).
Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske skrifter 5, 1–34 (1948).
Leroy, B. et al. Without quality presence–absence data, discrimination metrics such as TSS can be misleading measures of model performance. J. Biogeogr. 45, 1994–2002 (2018). (PMID: 10.1111/jbi.13402)
Li, W. & Guo, Q. How to assess the prediction accuracy of species presence-absence models without absence data? Ecography 36, 788–799 (2013). (PMID: 10.1111/j.1600-0587.2013.07585.x)
Lange, S., Mengel, M., Treu, S. & Büchner, M. ISIMIP3a atmospheric climate input data https://doi.org/10.48364/ISIMIP.982724.1 (2022).
Lange, S. et al. WFDE5 over land merged with ERA5 over the ocean (W5E5 v2.0) https://doi.org/10.48364/ISIMIP.342217 (2021).
Lange, S. ISIMIP3BASD https://doi.org/10.5281/ZENODO.3648654 (2020).
Compo, G. P. et al. The twentieth century reanalysis project: the twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1–28 (2011). (PMID: 10.1002/qj.776)
معلومات مُعتمدة: UL1 TR001863 United States TR NCATS NIH HHS
تواريخ الأحداث: Date Created: 20240208 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
مُعرف محوري في PubMed: PMC10853512
DOI: 10.1038/s41467-024-45290-3
PMID: 38331945
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-45290-3