دورية أكاديمية

Economic and Sustainability Impacts of Yield and Composition Variation in Bioenergy Crops: Switchgrass ( Panicum virgatum L.).

التفاصيل البيبلوغرافية
العنوان: Economic and Sustainability Impacts of Yield and Composition Variation in Bioenergy Crops: Switchgrass ( Panicum virgatum L.).
المؤلفون: Happs RM; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Hanes RJ; Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Bartling AW; Catalytic Carbon and Transformation Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Field JL; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Harman-Ware AE; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Clark RJ; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Pendergast TH 4th; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States.; Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States.; Department of Plant Biology, University of Georgia, Athens, Georgia 30602, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Devos KM; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States.; Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States.; Department of Plant Biology, University of Georgia, Athens, Georgia 30602, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Webb EG; Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Missaoui A; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States.; Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Xu Y; Department of Plant Sciences, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Makaju S; Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, United States.; Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Shrestha V; Department of Plant Sciences, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Mazarei M; Department of Plant Sciences, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Stewart CN Jr; Department of Plant Sciences, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Millwood RJ; Department of Plant Sciences, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States., Davison BH; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
المصدر: ACS sustainable chemistry & engineering [ACS Sustain Chem Eng] 2024 Jan 22; Vol. 12 (5), pp. 1897-1910. Date of Electronic Publication: 2024 Jan 22 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101608852 Publication Model: eCollection Cited Medium: Print ISSN: 2168-0485 (Print) Linking ISSN: 21680485 NLM ISO Abbreviation: ACS Sustain Chem Eng Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Chemical Society, c2013-
مستخلص: Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of switchgrass ( Panicum virgatum L .) grown across three common garden sites. Samples from 331 switchgrass genotypes were collected and analyzed for carbohydrate and lignin components. Considering plant survival and biomass after multiple years of growth, we found that 84 of the genotypes analyzed may be suited for commercial production in the southeastern U.S. These genotypes show a range of growth and compositional traits across the population that are apparently independent of each other. We used these data to conduct techno-economic analyses and life cycle assessments evaluating the performance of each switchgrass genotype under a standard cellulosic ethanol process model with pretreatment, added enzymes, and fermentation. We find that switchgrass yield per area is the largest economic driver of the minimum fuel selling price (MSFP), ethanol yield per hectare, global warming potential (GWP), and cumulative energy demand (CED). At any yield, the carbohydrate content is significant but of secondary importance. Water use follows similar trends but has more variability due to an increased dependence on the biorefinery model. Analyses presented here highlight the primary importance of plant yield and the secondary importance of carbohydrate content when selecting a feedstock that is both economical and sustainable.
Competing Interests: The authors declare no competing financial interest.
(© 2024 The Authors. Published by American Chemical Society.)
References: Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12933-12941. (PMID: 31182579)
Nature. 2021 Feb;590(7846):438-444. (PMID: 33505029)
Energy Environ Sci. 2021 Jul 8;14(8):4147-4168. (PMID: 36324336)
Biotechnol Biofuels. 2021 Mar 4;14(1):55. (PMID: 33663584)
Biotechnol Biofuels. 2016 Nov 8;9:237. (PMID: 27826356)
New Phytol. 2019 Jul;223(1):293-309. (PMID: 30843213)
Bioresour Technol. 2010 May;101(9):3253-7. (PMID: 20074945)
Front Plant Sci. 2013 Jul 01;4:218. (PMID: 23847629)
Biotechnol Biofuels. 2021 Sep 10;14(1):179. (PMID: 34507592)
Biotechnol Biofuels Bioprod. 2022 Oct 31;15(1):116. (PMID: 36310161)
Front Plant Sci. 2022 May 19;13:739133. (PMID: 35665173)
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3803-8. (PMID: 21321194)
Front Plant Sci. 2023 May 30;14:1181035. (PMID: 37324714)
J Agric Food Chem. 2010 Aug 25;58(16):9043-53. (PMID: 20669951)
Biotechnol Biofuels. 2014 May 22;7:75. (PMID: 24876889)
BMC Evol Biol. 2018 Jun 14;18(1):91. (PMID: 29898656)
Theor Appl Genet. 2022 Aug;135(8):2577-2592. (PMID: 35780149)
Biotechnol Biofuels. 2021 Mar 6;14(1):59. (PMID: 33676543)
Plant Biotechnol J. 2014 Sep;12(7):914-24. (PMID: 24751162)
Methods Mol Biol. 2009;581:169-83. (PMID: 19768623)
BMC Genomics. 2015 Jan 23;16:24. (PMID: 25613058)
Science. 2007 Feb 9;315(5813):804-7. (PMID: 17289988)
Biotechnol Biofuels. 2019 Jan 17;12:15. (PMID: 30675183)
تواريخ الأحداث: Date Created: 20240209 Latest Revision: 20240210
رمز التحديث: 20240210
مُعرف محوري في PubMed: PMC10848292
DOI: 10.1021/acssuschemeng.3c05770
PMID: 38333206
قاعدة البيانات: MEDLINE
الوصف
تدمد:2168-0485
DOI:10.1021/acssuschemeng.3c05770