دورية أكاديمية

Neuroanatomical, electrophysiological, and morphological characterization of melanin-concentrating hormone cells coexpressing cocaine- and amphetamine-regulated transcript.

التفاصيل البيبلوغرافية
العنوان: Neuroanatomical, electrophysiological, and morphological characterization of melanin-concentrating hormone cells coexpressing cocaine- and amphetamine-regulated transcript.
المؤلفون: Miller PA; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada., Williams-Ikhenoba JG; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada., Sankhe AS; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada., Hoffe BH; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada., Chee MJ; Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
المصدر: The Journal of comparative neurology [J Comp Neurol] 2024 Feb; Vol. 532 (2), pp. e25588.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0406041 Publication Model: Print Cited Medium: Internet ISSN: 1096-9861 (Electronic) Linking ISSN: 00219967 NLM ISO Abbreviation: J Comp Neurol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003-> : Hoboken, N.J. : Wiley-Liss
Original Publication: Philadelphia Wistar Institute of Anatomy and Biology
مواضيع طبية MeSH: Cocaine* , Hypothalamic Hormones*/metabolism, Animals ; Female ; Male ; Mice ; Amphetamines/metabolism ; Hypothalamus/metabolism ; Melanins/metabolism ; Nerve Tissue Proteins/genetics ; Nerve Tissue Proteins/metabolism ; Neurons/metabolism ; Pituitary Hormones/metabolism
مستخلص: Melanin-concentrating hormone (MCH) cells in the hypothalamus regulate fundamental physiological functions like energy balance, sleep, and reproduction. This diversity may be ascribed to the neurochemical heterogeneity among MCH cells. One prominent subpopulation of MCH cells coexpresses cocaine- and amphetamine-regulated transcript (CART), and as MCH and CART can have opposing actions, MCH/CART+ and MCH/CART- cells may differentially modulate behavioral outcomes. However, it is not known if there are differences in the cellular properties underlying their functional differences; thus, we compared the neuroanatomical, electrophysiological, and morphological properties of MCH cells in male and female Mch-cre;L10-Egfp reporter mice. Half of MCH cells expressed CART and were most prominent in the medial hypothalamus. Whole-cell patch-clamp recordings revealed differences in their passive and active membrane properties in a sex-dependent manner. Female MCH/CART+ cells had lower input resistances, but male cells largely differed in their firing properties. All MCH cells increased firing when stimulated, but their firing frequency decreases with sustained stimulation. MCH/CART+ cells showed stronger spike rate adaptation than MCH/CART- cells. The kinetics of excitatory events at MCH cells also differed by cell type, as the rising rate of excitatory events was slower at MCH/CART+ cells. By reconstructing the dendritic arborization of our recorded cells, we found no sex differences, but male MCH/CART+ cells had less dendritic length and fewer branch points. Overall, distinctions in topographical division and cellular properties between MCH cells add to their heterogeneity and help elucidate their response to stimuli or effect on modulating their respective neural networks.
(© 2024 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.)
References: Abbott, C. R., Rossi, M., Wren, A. M., Murphy, K. G., Kennedy, A. R., Stanley, S. A., Zollner, A. N., Morgan, D. G. A., Morgan, I., Ghatei, M. A., Small, C. J., & Bloom, S. R. (2001). Evidence of an orexigenic role for cocaine- and amphetamine-regulated transcript after administration into discrete hypothalamic nuclei. Endocrinology, 142, 3457-3463. https://doi.org/10.1210/endo.142.8.8304.
Abercrombie, M. (1946). Estimation of nuclear population from microtome sections. Anatomical Record, 94, 239-247. https://doi.org/10.1002/ar.1090940210.
Adamantidis, A., & de Lecea, L. (2009). A role for Melanin-Concentrating Hormone in learning and memory. Peptides, 30, 2066-2070. https://doi.org/10.1016/j.peptides.2009.06.024.
Aja, S., Sahandy, S., Ladenheim, E. E., Schwartz, G. J., & Moran, T. H. (2001). Intracerebroventricular CART peptide reduces food intake and alters motor behavior at a hindbrain site. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 281(6), R1862-R1863. https://doi.org/10.1152/ajpregu.2001.281.6.R1862.
Amateau, S. K., & McCarthy, M. M. (2002). A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2. The Journal of Neuroscience, 22, 8586-8596. https://doi.org/10.1523/JNEUROSCI.22-19-08586.2002.
Amateau, S. K., & McCarthy, M. M. (2004). Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nature Neuroscience, 7, 643-650. https://doi.org/10.1038/nn1254.
Arciszewski, M. B., Barabasz, S., Skobowiat, C., Maksymowicz, W., & Majewski, M. (2009). Immunodetection of cocaine- and amphetamine-regulated transcript in the rumen, reticulum, omasum and abomasum of the sheep. Anatomia, Histologia, Embryologia, 38, 62-67. https://doi.org/10.1111/j.1439-0264.2008.00893.x.
Beekly, B. G., Frankel, W. C., Berg, T., Allen, S. J., Garcia-Galiano, D., Vanini, G., & Elias, C. F. (2020). Dissociated Pmch and Cre expression in lactating Pmch-Cre BAC transgenic mice. Frontiers in Neuroanatomy, 14, 60. https://doi.org/10.3389/fnana.2020.00060.
Benedetto, L., Pereira, M., Ferreira, A., & Torterolo, P. (2014). Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides, 58, 20-25. https://doi.org/10.1016/j.peptides.2014.05.012.
Bittencourt, J. C. (1992). The melanin-concentrating hormone system of the rat brain: An immuno- and hybridization histochemical characterization. Journal of Comparative Neurology, 319, 218-245. https://doi.org/10.1002/cne.903190204.
Bogus-Nowakowska, K., Robak, A., Równiak, M., Wasilewska, B., Najdzion, J., Kolenkiewicz, M., Zakowski, W., & Majewski, M. (2011). Distribution and chemical coding pattern of the cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in the preoptic area of the pig. Folia Histochemica Et Cytobiologica, 49, 604-614. https://doi.org/10.5603/FHC.2011.0083.
Bono, B. S., Koziel Ly, N. K., Miller, P. A., Williams-Ikhenoba, J., Dumiaty, Y., & Chee, M. J. (2022). Spatial distribution of beta-klotho mRNA in the mouse hypothalamus, hippocampal region, subiculum, and amygdala. Journal of Comparative Neurology, 530, 1634-1657. https://doi.org/10.1002/cne.25306.
Borowsky, B., Durkin, M. M., Ogozalek, K., Marzabadi, M. R., Deleon, J., Heurich, R., Lichtblau, H., Shaposhnik, Z., Daniewska, I., Blackburn, T. P., Branchek, T. A., Gerald, C., Vaysse, P. J., & Forray, C. (2002). Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nature Medicine, 8, 825-830. https://doi.org/10.1038/nm741.
Briggs, C., Hirasawa, M., & Semba, K. (2018). Sleep deprivation distinctly alters glutamate transporter 1 apposition and excitatory transmission to orexin and MCH neurons. Journal of Neuroscience, 38, 2505-2518. https://doi.org/10.1523/JNEUROSCI.2179-17.2018.
Brischoux, F., Cvetkovic, V., Griffond, B., Fellmann, D., & Risold, P. Y. (2002). Time of genesis determines projection and Neurokinin-3 expression patterns of diencephalic neurons containing melanin-concentrating hormone. European Journal of Neuroscience, 16, 1672-1680. https://doi.org/10.1046/j.1460-9568.2002.02229.x.
Brischoux, F., Fellmann, D., & Risold, P. Y. (2001). Ontogenetic development of the diencephalic MCH neurons: A hypothalamic “MCH area” hypothesis. European Journal of Neuroscience, 13, 1733-1744. https://doi.org/10.1046/j.0953-816x.2001.01552.x.
Broberger, C. (1999). Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: Histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Research, 848, 101-113. https://doi.org/10.1016/S0006-8993(99)01977-0.
Le Brun, I., Dufour, A., Crest, M., Szabó, G., Erdelyi, F., & Baude, A. (2008). Differential expression of NK1 and NK3 neurokinin receptors in neurons of the nucleus tractus solitarius and the dorsal vagal motor nucleus of the rat and mouse. Neuroscience, 152, 56-64. https://doi.org/10.1016/j.neuroscience.2007.12.024.
Burdakov, D., Gerasimenko, O., & Verkhratsky, A. (2005). Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. Journal of Neuroscience, 25(9), 2429-2433. https://doi.org/10.1523/JNEUROSCI.4925-04.2005.
Burke, M. C., Letts, P. A., Krajewski, S. J., & Rance, N. E. (2006). Coexpression of dynorphin and neurokinin B immunoreactivity in the rat hypothalamus: Morphologic evidence of interrelated function within the arcuate nucleus. Journal of Comparative Neurology, 498, 712-726. https://doi.org/10.1002/cne.21086.
Chee, M. J. S., Arrigoni, E., & Maratos-Flier, E. (2015). Melanin-concentrating hormone neurons release glutamate for feedforward inhibition of the lateral septum. The Journal of Neuroscience, 35, 3644-3651. https://doi.org/10.1523/JNEUROSCI.4187-14.2015.
Chee, M. J. S., Pissios, P., & Maratos-Flier, E. (2013). Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. Journal of Comparative Neurology, 521, 2208-2234. https://doi.org/10.1002/cne.23273.
Clegg, D. J., Air, E. L., Benoit, S. C., Sakai, R. S., Seeley, R. J., Woods, S. C., & Clegg, D. J. (2003). Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284, 494-499. https://doi.org/10.1152/ajpregu.00399.2002.
Concetti, C., & Burdakov, D. (2021). Orexin/hypocretin and MCH neurons: Cognitive and motor roles beyond arousal. Frontiers in Neuroscience, 15, 294. https://doi.org/10.3389/fnins.2021.639313.
Croizier, S., Cardot, J., Brischoux, F., Fellmann, D., Griffond, B., & Risold, P. Y. (2012). The vertebrate diencephalic MCH system: A versatile neuronal population in an evolving brain. Frontiers in Neuroendocrinology, 34, 65-87. https://doi.org/10.1016/j.yfrne.2012.10.001.
Croizier, S., Franchi-Bernard, G., Colard, C., Poncet, F., la Roche, A., & Risold, P. Y. (2010). A comparative analysis shows morphofunctional differences between the rat and mouse melanin-concentrating hormone systems. PLoS ONE, 5(11), Article e15471. https://doi.org/10.1371/journal.pone.0015471.
Cvetkovic, V., Brischoux, F., Jacquemard, C., Fellmann, D., Griffond, B., & Risold, P.-Y. (2004). Characterization of subpopulations of neurons producing melanin-concentrating hormone in the rat ventral diencephalon. Journal of Neurochemistry, 91, 911-919. https://doi.org/10.1111/j.1471-4159.2004.02776.x.
Cvetkovic, V., Poncet, F., Fellmann, D., Griffond, B., & Risold, P. Y. (2003). Diencephalic neurons producing melanin-concentrating hormone are influenced by local and multiple extra-hypothalamic tachykininergic projections through the neurokinin 3 receptor. Neuroscience, 119, 1113-1145. https://doi.org/10.1016/S0306-4522(03)00146-5.
Dallvechia-Adams, S., Kuhar, M. J., & Smith, Y. (2002). Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: Colocalization with γ-aminobutyric acid, melanin-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons. Journal of Comparative Neurology, 448, 360-372. https://doi.org/10.1002/cne.10268.
Della-Zuana, O., Presse, F., Ortola, C., Duhault, J., Nahon, J. L., & Levens, N. (2002). Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats. International Journal of Obesity, 26, 1289-1295. https://doi.org/10.1038/sj.ijo.0802079.
Ding, Y.-Q., Shigemoto, R., Takada, M., Ohishi, H., Nakanishi, S., & Mizuno, N. (1996). Localization of the neuromedin K receptor (NK3) in the central nervous system of the rat. Journal of Comparative Neurology, 364, 290-310. https://doi.org/10.1002/(SICI)1096-9861(19960108)364:2<290::AID-CNE8>3.0.CO;2-0.
Diniz, G. B., Battagello, D. S., Klein, M. O., Bono, B. S. M., Ferreira, J. G. P., Motta-Teixeira, L. C., Duarte, J. C. G., Presse, F., Nahon, J. L., Adamantidis, A., Chee, M. J., Sita, L v., & Bittencourt, J. C. (2020). Ciliary melanin-concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS in a sex-independent manner. Journal of Neuroscience Research, 98, 2045-2071. https://doi.org/10.1002/jnr.24651.
Diniz, G. B., & Bittencourt, J. C. (2017). The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Frontiers in Systems Neuroscience, 11, 32. https://doi.org/10.3389/fnsys.2017.00032.
Dong, H. W. (2008). The Allen reference atlas: A digital color brain atlas of the C57BL/6J male mouse. John Wiley & Sons.
Dreifuss, J. J., Grau, J. D., Legros, J. J., & Nordmann, J. J. (1972). The isolated neurohypophysis, a model for studies on neuroendocrine release mechanisms. Progress in Brain Research, 38, 31-40. https://doi.org/10.1016/S0079-6123(08)64265-X.
Eggermann, E., Bayer, L., Serafin, M., Benoıˆt Saint-Mleux, B., Bernheim, L., Le Machard, D., Jones, B. E., & Mühlethaler, M. (2003). The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization. The Journal of Neuroscience, 23, 1557-1562. https://doi.org/10.1523/JNEUROSCI.23-05-01557.2003.
Ekstrand, M. I., Nectow, A. R., Knight, Z. A., Latcha, K. N., Pomeranz, L. E., & Friedman, J. M. (2014). Molecular profiling of neurons based on connectivity. Cell, 157, 1230-1242. https://doi.org/10.1016/j.cell.2014.03.059.
Van Elburg, R. A. J., & Van Ooyen, A. (2010). Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Computational Biology, 6, Article 1000781. https://doi.org/10.1371/journal.pcbi.1000781.
Elias, C. F., Lee, C. E., Kelly, J. F., Ahima, R. S., Kuhar, M., Saper, C. B., & Elmquist, J. K. (2001). Characterization of CART neurons in the rat and human hypothalamus. Journal of Comparative Neurology, 432(1), 1-19.
Elias, C. F., Saper, C. B., Maratos-Flier, E., Tritos, N. A., Lee, C., Kelly, J., Tatro, J. B., Hoffman, G. E., Ollmann, M. M., Barsh, G. S., Sakurai, T., Yanagisawa, M., & Elmquist, J. K. (1998). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 402, 442-459. https://doi.org/10.1002/(SICI)1096-9861(19981228)402:4<442::AID-CNE2>3.0.CO;2-R.
Farzi, A., Lau, J., Ip, C. K., Qi, Y., Shi, Y. C., Zhang, L., Tasan, R., Sperk, G., & Herzog, H. (2018). Arcuate nucleus and lateral hypothalamic cart neurons in the mouse brain exert opposing effects on energy expenditure. eLife, 7, Article e36494. https://doi.org/10.7554/eLife.36494.
Fujita, A., Zhong, L., Antony, M. S., Chamiec-Case, E., Mickelsen, L. E., Kanoski, S. E., Flynn, W. F., & Jackson, A. C. (2021). Neurokinin B-expressing neurons of the central extended amygdala mediate inhibitory synaptic input onto melanin-concentrating hormone neuron subpopulations. The Journal of neuroscience, 41, 9539-9560. https://doi.org/10.1523/JNEUROSCI.2600-20.2021.
Gainer, H., Wolfe, J. S. A., Lia Obaid, A. L., & Salzberg, B. M. (1986). Action potentials and frequency-dependent secretion in the mouse neurohypophysis. Neuroendocrinology, 43, 557-563. https://doi.org/10.1159/000124582.
Georgescu, D., Sears, R. M., Hommel, J. D., Barrot, M., Bolaños, C. A., Marsh, D. J., Bednarek, M. A., Bibb, J. A., Maratos-Flier, E., Nestler, E. J., & DiLeone, R. J. (2005). The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. Journal of Neuroscience, 25, 2933-2940. https://doi.org/10.1523/JNEUROSCI.1714-04.2005.
Glick, M., Segal-Lieberman, G., Cohen, R., & Kronfeld-Schor, N. (2009). Chronic MCH infusion causes a decrease in energy expenditure and body temperature, and an increase in serum IGF-1 levels in mice. Endocrine, 36, 479-485. https://doi.org/10.1007/s12020-009-9252-5.
Golowasch, J., Thomas, G., Taylor, A. L., Patel, A., Pineda, A., Khalil, C., & Nadim, F. (2009). Membrane capacitance measurements revisited: Dependence of capacitance value on measurement method in nonisopotential neurons. Journal of Neurophysiology, 102, 2161-2175. https://doi.org/10.1152/jn.00160.2009.
Gomori, A., Ishihara, A., Ito, M., Mashiko, S., Matsushita, H., Yumoto, M., Ito, M., Tanaka, T., Tokita, S., Moriya, M., Iwaasa, H., & Kanatani, A. (2003). Chronic intracerebroventricular infusion of MCH causes obesity in mice. American Journal of Physiology. Endocrinology and Metabolism, 284, 583-588. https://doi.org/10.1152/ajpendo.00350.2002.
González, J. A., Iordanidou, P., Strom, M., Adamantidis, A., & Burdakov, D. (2016). Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nature Communications, 7, Article 11395. https://doi.org/10.1038/ncomms11395.
Gonzalez, M. I., Baker, B. I., & Wilson, C. A. (1997). Stimulatory effect of melanin-concentrating hormone on luteinising hormone release. Neuroendocrinology, 66, 254-262. https://doi.org/10.1159/000127246.
Grafe, L. A., Geng, E., Corbett, B., Urban, K., & Bhatnagar, S. (2019). Sex- and stress-dependent effects on dendritic morphology and spine densities in putative orexin neurons. Neuroscience, 418, 266-278. https://doi.org/10.1016/j.neuroscience.2019.08.026.
Harthoorn, L. F., Sañé, A., Nethe, M., & van Heerikhuize, J. J. (2005). Multi-transcriptional profiling of melanin-concentrating hormone and orexin-containing neurons. Cellular and Molecular Neurobiology, 25, 1209-1223. https://doi.org/10.1007/s10571-005-8184-8.
Hassani, O. K., Gee Lee, M., & Jones, B. E. (2009). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proceedings of the National Academy of Sciences of the United States of America, 106, 2418-2422. https://doi.org/10.1073/pnas.0811400106.
Hausen, A. C., Ruud, J., Jiang, H., Hess, S., Varbanov, H., Kloppenburg, P., & Brüning, J. C. (2016). Insulin-dependent activation of MCH neurons impairs locomotor activity and insulin sensitivity in obesity. Cell Reports, 17, 2512-2521. https://doi.org/10.1016/j.celrep.2016.11.030.
Hoffman, G. E., Murphy, K. J., & Sita, L V. (2016). The importance of titrating antibodies for immunocytochemical methods. Current Protocols in Neuroscience, 76, 2.12.1-2.12.37. https://doi.org/10.1002/cpns.1.
Hunyady, B., Krempels, K., Harta, G., & Mezey, É. (1996). Immunohistochemical signal amplification by catalyzed reporter deposition and its application in double immunostaining. Journal of Histochemistry and Cytochemistry, 44, 1353-1362. https://doi.org/10.1177/44.12.8985127.
Iacobas, D. A., Iacobas, S., Lee, P. R., Cohen, J. E., & Douglas Fields, R. (2019). Coordinated activity of transcriptional networks responding to the pattern of action potential firing in neurons. Genes, 10(10), 754. https://doi.org/10.3390/genes10100754.
Jego, S., Glasgow, S. D., Herrera, C. G., Ekstrand, M., Reed, S. J., Boyce, R., Friedman, J., Burdakov, D., & Adamantidis, A. R. (2013). Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nature Neuroscience, 16, 1637-1643. https://doi.org/10.1038/nn.3522.
Jiang, H., Gallet, S., Klemm, P., Scholl, P., Folz-Donahue, K., Altmüller, J., Alber, J., Heilinger, C., Kukat, C., Loyens, A., Müller-Fielitz, H., Sundaram, S., Schwaninger, M., Prevot, V., & Brüning, J. C. (2020). MCH neurons regulate permeability of the median eminence barrier. Neuron, 107(2), 306.e9-319.e9. https://doi.org/10.1016/j.neuron.2020.04.020.
Kamijo, T. C., Hayakawa, H., Fukushima, Y., Kubota, Y., Isomura, Y., Tsukada, M., & Aihara, T. (2014). Input integration around the dendritic branches in hippocampal dentate granule cells. Cognitive Neurodynamics, 8, 267-276. https://doi.org/10.1007/s11571-014-9280-6.
Keating, G. L., Kuhar, M. J., Bliwise, D. L., & Rye, D. B. (2010). Wake promoting effects of cocaine-and amphetamine-regulated transcript (CART). Neuropeptides, 44(3), 241-246. https://doi.org/10.1016/j.npep.2009.12.013.
Kiss, J. Z. (1988). Dynamism of chemoarchitecture in the hypothalamic paraventricular nucleus. Brain Research Bulletin, 20, 699-708. https://doi.org/10.1016/0361-9230(88)90080-9.
Klein, J. P., Tendi, E. A., Dib-Hajj, S. D., Douglas Fields, R., & Waxman, S. G. (2003). Patterned electrical activity modulates sodium channel expression in sensory neurons. Journal of Neuroscience Research, 74, 192-198. https://doi.org/10.1002/jnr.10768.
Kong, D., Vong, L., Parton, L. E., Ye, C., Tong, Q., Hu, X., Choi, B., Brüning, J. C., & Lowell, B. B. (2010). Glucose stimulation of hypothalamic MCH neurons involves K(ATP) channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metabolism, 12, 545-552. https://doi.org/10.1016/j.cmet.2010.09.013.
Kong, W. M., Stanley, S., Gardiner, J., Abbott, C., Murphy, K., Seth, A., Connoley, I., Ghatei, M., Stephens, D., & Bloom, S. (2003). A role for arcuate cocaine and amphetamine regulated transcript in hyperphagia, thermogenesis, and cold adaptation. The FASEB Journal, 17, 1688-1690. https://doi.org/10.1096/fj.02-0805fje.
Koylu, E. O., Couceyro, R., Lambert, P. D., Ling, N. C., Desouza, E. B., & Kuhar, M. J. (1997). Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. Journal of Neuroendocrinology, 9(11), 823-833.
Krashes, M. J., Shah, B. P., Madara, J. C., Olson, D. P., Strochlic, D. E., Garfield, A. S., Vong, L., Pei, H., Watabe-Uchida, M., Uchida, N., Liberles, S. D., & Lowell, B. B. (2014). An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature, 507, 238-242. https://doi.org/10.1038/nature12956.
Krichmar, J. L., Nasuto, S. J., Scorcioni, R., Washington, S. D., & Ascoli, G. A. (2002). Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: A simulation study. Brain Research, 941(1-2), 11-28.
Kristensen, P., Judge, M. E., Thim, L., Ribel, U., Christjansen, K. N., Wulff, B. S., Clausen, J. T., Jensen, P. B., Madsen, O. D., Vrang, N., Larsen, P. J., & Hastrup, S. (1998). Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature, 393, 72-76. https://doi.org/10.1038/29993.
Larsen, P. J., Vrang, N., Petersen, P. C., & Kristensen, P. (2000). Chronic intracerebroventricular administration of recombinant CART(42-89) peptide inhibits food intake and causes weight loss in lean and obese Zucker (fa/fa) rats. Obesity Research, 8, 590-596. https://doi.org/10.1038/oby.2000.76.
Lau, J., Farzi, A., Qi, Y., Heilbronn, R., Mietzsch, M., Shi, Y. C., & Herzog, H. (2018). CART neurons in the arcuate nucleus and lateral hypothalamic area exert differential controls on energy homeostasis. Molecular Metabolism, 7, 102-118. https://doi.org/10.1016/j.molmet.2017.10.015.
Lau, J., & Herzog, H. (2014). CART in the regulation of appetite and energy homeostasis. Frontiers in neuroscience, 8, 313. https://doi.org/10.3389/fnins.2014.00313.
Lebrethon, M. C., Vandersmissen, E., Gérard, A., Parent, A. S., & Bourguignon, J. P. (2000). Cocaine and amphetamine-regulated-transcript peptide mediation of leptin stimulatory effect on the rat gonadotropin-releasing hormone pulse generator in vitro. Journal of Neuroendocrinology, 12, 383-385. https://doi.org/10.1046/j.1365-2826.2000.00497.x.
Lee, P. R., Cohen, J. E., Iacobas, D. A., Iacobas, S., & Fields, R. D. (2017). Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. Scientific Reports, 7, Article 43765. https://doi.org/10.1038/srep43765.
Leslie, R. A., Sanders, S. J. K., Anderson, S. I., Schuhler, S., Horan, T. L., & Ebling, F. J. P. (2001). Appositions between cocaine and amphetamine-related transcript- and gonadotropin releasing hormone-immunoreactive neurons in the hypothalamus of the Siberian hamster. Neuroscience Letters, 314, 111-114. https://doi.org/10.1016/S0304-3940(01)02291-1.
Li, Y., & Van Den Pol, A. N. (2009). Enhanced excitatory input to melanin concentrating hormone neurons during developmental period of high food intake is mediated by GABA. Journal of Neuroscience, 29, 15195-15204. 10.1523/JNEUROSCI.4203-09.2009.
Linehan, V., Fang, L. Z., Parsons, M. P., & Hirasawa, M. (2020). High-fat diet induces time-dependent synaptic plasticity of the lateral hypothalamus. Molecular Metabolism, 36, Article 100977. 10.1016/j.molmet.2020.100977.
Linehan, V., & Hirasawa, M. (2018). Electrophysiological properties of melanin-concentrating hormone and orexin neurons in adolescent rats. Frontiers in Cellular Neuroscience, 12, 70. https://doi.org/10.3389/fncel.2018.00070.
Matsumoto, A., & Arai, Y. (1980). Sexual dimorphism in ‘wiring pattern’ in the hypothalamic arcuate nucleus and its modification by neonatal hormonal environment. Brain Research, 190, 238-242. https://doi.org/10.1016/0006-8993(80)91173-7.
McCarthy, M. M. (2008). Estradiol and the developing brain. Physiological Reviews, 88, 91-124. https://doi.org/10.1152/physrev.00010.2007.
Messina, M. M., Boersma, G., Overton, J. M., & Eckel, L. A. (2006). Estradiol decreases the orexigenic effect of melanin-concentrating hormone in ovariectomized rats. Physiology & Behavior, 88, 523-528. https://doi.org/10.1016/j.physbeh.2006.05.002.
Mickelsen, L. E., Bolisetty, M., Chimileski, B. R., Fujita, A., Beltrami, E. J., Costanzo, J. T., Naparstek, J. R., Robson, P., & Jackson, A. C. (2019). Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nature Neuroscience, 22(4), 642-656. https://doi.org/10.1038/s41593-019-0349-8.
Mickelsen, L. E., Kolling, F. W., Chimileski, B. R., Fujita, A., Norris, C., Chen, K., Nelson, C. E., & Jackson, A. C. (2017). Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro, 4, 13-17. https://doi.org/10.1523/ENEURO.0013-17.2017.
Mogi, K., Funabashi, T., Mitsushima, D., Hagiwara, H., & Kimura, F. (2005). Sex difference in the response of melanin-concentrating hormone neurons in the lateral hypothalamic area to glucose, as revealed by the expression of phosphorylated cyclic adenosine 3′,5′-monophosphate response element-binding protein. Endocrinology, 146, 3325-3333. https://doi.org/10.1210/en.2005-0078.
Mong, J. A., & McCarthy, M. M. (1999). Steroid-induced developmental plasticity in hypothalamic astrocytes: Implications for synaptic patterning. Journal of Neurobiology, 40, 602-619. https://doi.org/10.1002/(SICI)1097-4695(19990915)40:4<602::AID-NEU14>3.0.CO;2-O.
Monti, J. M., Torterolo, P., & Lagos, P. (2013). Melanin-concentrating hormone control of sleepe-wake behavior. Sleep Medicine Reviews, 17, 293-298. https://doi.org/10.1016/j.smrv.2012.10.002.
Monzon, M. E., De Souza, M. M., Izquierdo, L. A., Izquierdo, I., Barros, D. M., & De Barioglio, S. R. (1999). Melanin-concentrating hormone (MCH) modifies memory retention in rats. Peptides, 20, 1517-1519. https://doi.org/10.1016/S0196-9781(99)00164-3.
Morton, G. J., Mystkowski, P., Matsumoto, A. M., & Schwartz, M. W. (2004). Increased hypothalamic melanin concentrating hormone gene expression during energy restriction involves a melanocortin-independent, estrogen-sensitive mechanism. Peptides, 25, 667-674. https://doi.org/10.1016/j.peptides.2004.02.007.
Murray, J. F., Baker, B. I., Levy, A., & Wilson, C. A. (2000). The influence of gonadal steroids on pre-pro melanin-concentrating hormone mRNA in female rats. Journal of Neuroendocrinology, 12, 53-59. https://doi.org/10.1046/j.1365-2826.2000.00425.x.
Mystkowski, P., Seeley, R. J., Hahn, T. M., Baskin, D. G., Havel, P. J., Matsumoto, A. M., Wilkinson, C. W., Peacock-Kinzig, K., Blake, K. A., & Schwartz, M. W. (2000). Hypothalamic melanin-concentrating hormone and estrogen-induced weight loss. Journal of Neuroscience, 20, 8637-8642. https://doi.org/10.1523/JNEUROSCI.20-22-08637.2000.
Nakhate, K. T., Kokare, D. M., Singru, P. S., & Subhedar, N. K. (2010). Central regulation of feeding behavior during social isolation of rat: Evidence for the role of endogenous CART system. International Journal of Obesity, 35(6), 773-784. https://doi.org/10.1038/ijo.2010.231.
Negishi, K., Payant, M. A., Schumacker, K. S., Wittmann, G., Butler, R. M., Lechan, R. M., Steinbusch, H. W. M., Khan, A. M., & Chee, M. J. (2020). Distributions of hypothalamic neuron populations coexpressing tyrosine hydroxylase and the vesicular GABA transporter in the mouse. Journal of Comparative Neurology, 528, 1833-1855. https://doi.org/10.1002/cne.24857.
Noble, E. E., Hahn, J. D., Konanur, V. R., Hsu, T. M., Page, S. J., Cortella, A. M., Liu, C. M., Song, M. Y., Suarez, A. N., Szujewski, C. C., Rider, D., Clarke, J. E., Darvas, M., Appleyard, S. M., & Kanoski, S. E. (2018). Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone. Cell Metabolism, 28(1), 55.e7-68.e7. https://doi.org/10.1016/j.cmet.2018.05.001.
Padilla, S. L., Carmody, J. S., & Zeltser, L. M. (2010). Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nature Medicine, 16(4), 403-405. https://doi.org/10.1038/nm.2126.
Parent, A. S., Lebrethon, M. C., Gérard, A., Vandersmissen, E., & Bourguignon, J. P. (2000). Leptin effects on pulsatile gonadotropin releasing hormone secretion from the adult rat hypothalamus and interaction with cocaine and amphetamine regulated transcript peptide and neuropeptide Y. Regulatory Peptides, 92, 17-24. https://doi.org/10.1016/S0167-0115(00)00144-0.
Philpot, K. B., Dallvechia-Adams, S., Smith, Y., & Kuhar, M. J. (2005). A cocaine-and-amphetamine-regulated-transcript peptide projection from the lateral hypothalamus to the ventral tegmental area. Neuroscience, 135, 915-925. https://doi.org/10.1016/j.neuroscience.2005.06.064.
Poulain, D. A., & Wakerley, J. B. (1982). Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience, 7, 773-808. https://doi.org/10.1016/0306-4522(82)90044-6.
Psarrou, M., Stefanou, S. S., Papoutsi, A., Tzilivaki, A., Cutsuridis, V., & Poirazi, P. (2014). A simulation study on the effects of dendritic morphology on layer V prefrontal pyramidal cell firing behavior. Frontiers in Cellular Neuroscience, 8, 287. https://doi.org/10.3389/fncel.2014.00287.
Qu, D., Ludwig, D. S., Gammeltoft, S., Piper, M., Pelleymounter, M. A., Cullen, M. J., Mathes, W. F., Przypek, J., Kanarek, R., & Maratos-Flier, E. (1996). A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature, 380, 243-247. https://doi.org/10.1038/380243a0.
Rajan, I., & Cline, H. T. (1998). Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. The Journal of Neuroscience, 18(19), 7836-7846. https://doi.org/10.1523/jneurosci.18-19-07836.1998.
Rance, N. E., Dacks, P. A., Mittelman-Smith, M. A., Romanovsky, A. A., & Krajewski-Hall, S. J. (2013). Modulation of body temperature and LH secretion by hypothalamic KNDy (kisspeptin, neurokinin B and dynorphin) neurons: A novel hypothesis on the mechanism of hot flushes. Frontiers in Neuroendocrinology, 34, 211-227. https://doi.org/10.1016/j.yfrne.2013.07.003.
Rance, N. E., Krajewski, S. J., Smith, M. A., Cholanian, M., & Dacks, P. A. (2010). Neurokinin B and the hypothalamic regulation of reproduction. Brain Research, 1364, 116-128. https://doi.org/10.1016/j.brainres.2010.08.059.
Richards, D. A., Mateos, J. M., Hugel, S., de Paola, V., Caroni, P., Gähwiler, B. H., & McKinney, R. A. (2005). Glutamate induces the rapid formation of spine head protrusions in hippocampal slice cultures. Proceedings of the National Academy of Sciences, 102(17), 6166-6171. https://doi.org/10.1073/pnas.0501881102.
Risold, P. Y., Croizier, S., Legagneux, K., Brischoux, F., Fellmann, D., & Griffond, B. (2009). The development of the MCH system. Peptides, 30, 1969-1972. https://doi.org/10.1016/j.peptides.2009.07.016.
Rohner-Jeanrenaud, F., Craft, L. S., Bridwell, J., Suter, T. M., Tinsley, F. C., Smiley, D. L., Burkhart, D. R., Statnick, M. A., Heiman, M. L., Ravussin, E., & Caro, J. F. (2002). Chronic central infusion of cocaine- and amphetamine-regulated transcript (CART 55-102): Effects on body weight homeostasis in lean and high-fat-fed obese rats. International Journal of Obesity, 26(2), 143-149. https://doi.org/10.1038/sj.ijo.0801863.
Rondini, T. A., Donato, J. B., De, B., Rodrigues, C., Cioni Bittencourt, J., & Elias, C. F. (2010). Chemical identity and connections of medial preoptic area neurons expressing melanin-concentrating hormone during lactation. Journal of Chemical Neuroanatomy, 39, 51-62. https://doi.org/10.1016/j.jchemneu.2009.10.005.
Rossi, M., Choi, S. J., Shea, ’., Miyoshi, T., Ghatei, M. A., & Bloom, S. R. (1997). Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology, 138, 351-355. https://doi.org/10.1210/endo.138.1.4887.
Sankhe, A. S., Bordeleau, D., Alfonso, D. I. M., Wittman, G., & Chee, M. J. (2022). Loss of glutamatergic signalling from MCH neurons reduced anxiety-like behaviours in novel environments. Journal of Neuroendocrinology, 35, Article e13222. https://doi.org/10.1111/jne.13222.
Santollo, J., & Eckel, L. A. (2007). The orexigenic effect of melanin-concentrating hormone (MCH) is influenced by sex and stage of the estrous cycle. Physiology & Behaviour, 93, 842-850. https://doi.org/10.1016/j.physbeh.2007.11.050.
Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S., & Maratos-Flier, E. (1998). Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature, 396, 670-674. https://doi.org/10.1038/25341.
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87, 387-406. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1244622/.
Shwarz, J., & McCarthy, M. (2008). The role of neonatal NMDA receptor activation in defeminization and masculinization of sex behavior in the rat. Hormones and Behavior, 54, 662-668. https://doi.org/10.1016/j.yhbeh.2008.07.004.
Simmons, D., & Swanson, L. (1993). The Nissl stain. Neuroscience Protocols, 50, 1-7.
Sin, W. C., Haas, K., Ruthazer, E. S., & Cline, H. T. (2002). Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature, 419(6906), 475-480. https://doi.org/10.1038/nature00987.
Smith, K. L., Gardiner, J V., Ward, H. L., Kong, W. M., Murphy, K. G., Martin, N. M., Ghatei, M. A., & Bloom, S. R. (2008). Overexpression of CART in the PVN increases food intake and weight gain in rats. Obesity, 16, 2239-2244. https://doi.org/10.1038/oby.2008.366.
Spruston, N., Stuart, G., & Häusser, M. (2016). Principles of dendritic integration. In G. Stuart, N. Spruston, & M. Häusser (Eds.), Dendrites (3rd ed., pp. 351-398). Oxford University Press.
Steinhoff, M. S., von Mentzer, B., Geppetti, P., Pothoulakis, C., & Bunnett, N. W. (2014). Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease. Physiological Reviews, 94, 265-301. https://doi.org/10.1152/physrev.00031.2013.
Steuernagel, L., Lam, B. Y. H., Klemm, P., Dowsett, G. K. C., Bauder, C. A., Tadross, J. A., Hitschfeld, T. S., del Rio Martin, A., Chen, W., de Solis, A. J., Fenselau, H., Davidsen, P., Cimino, I., Kohnke, S. N., Rimmington, D., Coll, A. P., Beyer, A., Yeo, G. S. H., & Brüning, J. C. (2022). HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nature Metabolism, 4(10), 1402-1419. https://doi.org/10.1038/s42255-022-00657-y.
Subhedar, N. K., Nakhate, K. T., Upadhya, M. A., & Kokare, D. M. (2014). CART in the brain of vertebrates: Circuits, functions and evolution. Peptides, 54, 108-130. https://doi.org/10.1016/j.peptides.2014.01.004.
Swanson, L. W. (1991). Biochemical switching in hypothalamic circuits mediating responses to stress. Progress in Brain Research, 87, 181-200. 10.1016/S0079-6123(08)63052-6.
Swietek, B., Gupta, A., Proddutur, A., & Santhakumar, V. (2016). Immunostaining of biocytin-filled and processed sections for neurochemical markers. Journal of Visualized Experiments, 118, Article 54880. https://doi.org/10.3791/54880-v.
Terrill, S. J., Subramanian, K. S., Lan, R., Liu, C. M., Cortella, A. M., Noble, E. E., & Kanoski, S. E. (2020). Nucleus accumbens melanin-concentrating hormone signaling promotes feeding in a sex-specific manner. Neuropharmacology, 178, Article 108270. https://doi.org/10.1016/j.neuropharm.2020.108270.
Tóth, Z. E., & Mezey, É. (2007). Simultaneous visualization of multiple antigens with tyramide signal amplification using antibodies from the same species. Journal of Histochemistry and Cytochemistry, 55, 545-554. https://doi.org/10.1369/jhc.6A7134.2007.
Tritos, N. A., Segal-Lieberman, G., Vezeridis, P. S., & Maratos-Flier, E. (2004). Estradiol-induced anorexia is independent of leptin and melanin-concentrating hormone. Obesity Research, 12, 716-724. https://doi.org/10.1038/oby.2004.84.
Tritos, N. A., Vicent, D., Gillette, J., Ludwig, D. S., Flier, E. E., & Maratos-Flier, E. (1998). Functional interactions between melanin-concentrating hormone, neuropeptide Y, and anorectic neuropeptides in the rat hypothalamus. Diabetes, 47(11), 1687-1692. https://doi.org/10.2337/diabetes.47.11.1687.
True, C., Verma, S., Grove, K. L., & Smith, M. S. (2013). Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology, 154(8), 2821-2832. https://doi.org/10.1210/en.2013-1156.
Verret, L., Goutagny, R., Fort, P., Cagnon, L., Salvert, D., Léger, L., Boissard, R., Salin, P., Peyron, C., & Luppi, P. H. (2003). A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 4, 19. https://doi.org/10.1186/1471-2202-4-19.
Vrang, N. (2006). Anatomy of hypothalamic CART neurons. Peptides, 27, 1970-1980. 10.1016/j.peptides.2005.10.029.
Vrang, N., Larsen, P. J., Clausen, J. T., & Kristensen, P. (1999). Neurochemical characterization of hypothalamic cocaine-amphetamine-regulated transcript neurons. The Journal of Neuroscience, 19(10), RC5. https://doi.org/10.1523/JNEUROSCI.19-10-j0006.1999.
Wang, Y., Eddison, M., Fleishman, G., Weigert, M., Xu, S., Wang, T., Rokicki, K., Goina, C., Henry, F. E., Lemire, A. L., Schmidt, U., Yang, H., Svoboda, K., Myers, E. W., Saalfeld, S., Korff, W., Sternson, S. M., & Tillberg, P. W. (2021). EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell, 184, 6361.e24-6377.e24. https://doi.org/10.1016/j.cell.2021.11.024.
von Wasielewski, R., Mengel, M., Gignac, S., Wilkens, L., Werner, M., & Georgii, A. (1997). Tyramine amplification technique in routine immunohistochemistry. Journal of Histochemistry and Cytochemistry, 45, 1455-1459. https://doi.org/10.1177/002215549704501102.
Williamson-Hughes, P. S., Grove, K. L., & Smith, M. S. (2005). Melanin concentrating hormone (MCH): A novel neural pathway for regulation of GnRH neurons. Brain Research, 1041, 117-124. https://doi.org/10.1016/j.brainres.2004.11.066.
Wu, M., Dumalska, I., Morozova, E., Van Den Pol, A., & Alreja, M. (2009). Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction. Proceedings of the National Academy of Sciences of the United States of America, 106, 17217-17222. https://doi.org/10.1073/pnas.0908200106.
Yang, S.-C., & Shieh, K.-R. (2005). Differential effects of melanin concentrating hormone on the central dopaminergic neurons induced by the cocaine-and amphetamine-regulated transcript peptide. Journal of Neurochemistry, 92, 637-646. https://doi.org/10.1111/j.1471-4159.2004.02896.x.
Yang, S. C., Shieh, K. R., & Li, H. Y. (2005). Cocaine- and amphetamine-regulated transcript in the nucleus accumbens participates in the regulation of feeding behavior in rats. Neuroscience, 133, 841-851. https://doi.org/10.1016/j.neuroscience.2005.03.023.
Zinyk, D. L., Mercer, E. H., Harris, E., Anderson, D. J., & Joyner, A. L. (1998). Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Current Biology, 8, 665-672. https://doi.org/10.1016/S0960-9822(98)70255-6.
معلومات مُعتمدة: Natural Sciences and Engineering Research Council of Canada; Carleton University; Province of Ontario
فهرسة مساهمة: Keywords: CART; MCH; dendritic branching; electrical fingerprint; excitatory input; glutamate; lateral hypothalamus; neurokinin 3 receptor; sex difference
المشرفين على المادة: 0 (Amphetamines)
I5Y540LHVR (Cocaine)
0 (Hypothalamic Hormones)
67382-96-1 (melanin-concentrating hormone)
0 (Melanins)
0 (Nerve Tissue Proteins)
0 (Pituitary Hormones)
0 (cocaine- and amphetamine-regulated transcript protein)
تواريخ الأحداث: Date Created: 20240209 Date Completed: 20240214 Latest Revision: 20240426
رمز التحديث: 20240426
DOI: 10.1002/cne.25588
PMID: 38335050
قاعدة البيانات: MEDLINE
الوصف
تدمد:1096-9861
DOI:10.1002/cne.25588