دورية أكاديمية

Finding tau rhythms in EEG: An independent component analysis approach.

التفاصيل البيبلوغرافية
العنوان: Finding tau rhythms in EEG: An independent component analysis approach.
المؤلفون: Wisniewski MG; Kansas State University, Manhattan, Kansas, USA., Joyner CN; Kansas State University, Manhattan, Kansas, USA., Zakrzewski AC; Kansas State University, Manhattan, Kansas, USA., Makeig S; Swartz Center for Computational Neuroscience, University of California San Diego, La Jolla, California, USA.
المصدر: Human brain mapping [Hum Brain Mapp] 2024 Feb 01; Vol. 45 (2), pp. e26572.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 9419065 Publication Model: Print Cited Medium: Internet ISSN: 1097-0193 (Electronic) Linking ISSN: 10659471 NLM ISO Abbreviation: Hum Brain Mapp Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Wiley
Original Publication: New York : Wiley-Liss, c1993-
مواضيع طبية MeSH: Auditory Cortex*/physiology , Brain Waves*, Humans ; Algorithms ; Magnetoencephalography
مستخلص: Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.
(© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.)
References: Curr Opin Psychol. 2019 Oct;29:229-238. (PMID: 31100655)
Exp Brain Res. 2019 Mar;237(3):705-721. (PMID: 30552451)
Neuroimage. 2014 Feb 15;87:356-62. (PMID: 24188814)
Brain Topogr. 2014 Jan;27(1):149-57. (PMID: 23700271)
Electroencephalogr Clin Neurophysiol. 1993 Apr;86(4):283-93. (PMID: 7682932)
Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10979-84. (PMID: 9380745)
PLoS One. 2012;7(7):e41025. (PMID: 22911734)
Eur J Neurosci. 2010 May;31(9):1701-7. (PMID: 20525083)
Eur J Neurosci. 2021 Dec;54(12):8406-8420. (PMID: 33012055)
Neurosci Lett. 1991 Aug 19;129(2):303-5. (PMID: 1745412)
Science. 2002 Jan 25;295(5555):690-4. (PMID: 11809976)
Neuroimage. 2005 Aug 15;27(2):341-56. (PMID: 15927487)
Neurosci Lett. 2009 Apr 10;453(3):225-8. (PMID: 19429040)
IEEE Trans Rehabil Eng. 2000 Jun;8(2):208-11. (PMID: 10896189)
Wiley Interdiscip Rev Cogn Sci. 2020 Jan;11(1):e1514. (PMID: 31381275)
Sci Rep. 2016 Sep 20;6:33693. (PMID: 27647158)
Neural Comput. 1995 Nov;7(6):1129-59. (PMID: 7584893)
Neuroimage. 2019 Oct 1;199:512-520. (PMID: 31129305)
Front Psychol. 2014 Jul 10;5:656. (PMID: 25071633)
J Neurophysiol. 2022 Jan 1;127(1):213-224. (PMID: 34936516)
Brain Res Rev. 2011 Jun 24;67(1-2):331-43. (PMID: 21592583)
Trends Cogn Sci. 2012 Dec;16(12):606-17. (PMID: 23141428)
Schizophr Res. 2011 Mar;126(1-3):36-42. (PMID: 21036541)
J Neurosci. 2014 May 7;34(19):6634-9. (PMID: 24806688)
Restor Neurol Neurosci. 2020;38(4):283-299. (PMID: 32675432)
J Neurosci. 2021 Oct 13;41(41):8603-8617. (PMID: 34429378)
Science. 1998 May 29;280(5368):1439-43. (PMID: 9603734)
Neuroimage. 2019 Sep;198:181-197. (PMID: 31103785)
Neuroimage. 2017 Mar 1;148:240-253. (PMID: 28110090)
Front Hum Neurosci. 2010 Nov 04;4:186. (PMID: 21119777)
Neural Netw. 2000 May-Jun;13(4-5):411-30. (PMID: 10946390)
Clin Neurophysiol. 2009 Nov;120(11):1883-1908. (PMID: 19796989)
Psychophysiology. 2015 Aug;52(8):997-1009. (PMID: 25903295)
Clin Neurophysiol. 2001 Feb;112(2):393-403. (PMID: 11165546)
Neurosci Lett. 1997 Jan 31;222(2):111-4. (PMID: 9111741)
Neuroimage. 2019 Aug 15;197:60-68. (PMID: 31015026)
PLoS Biol. 2004 Jun;2(6):e176. (PMID: 15208723)
Trends Cogn Sci. 2019 Nov;23(11):913-926. (PMID: 31606386)
Psychophysiology. 2021 Sep;58(9):e13877. (PMID: 34161612)
Brain Res Rev. 2007 Jan;53(1):63-88. (PMID: 16887192)
Front Neurosci. 2014 Dec 09;8:396. (PMID: 25538550)
Hear Res. 2014 Jan;307:16-28. (PMID: 23895875)
Cereb Cortex. 2017 Jun 1;27(6):3307-3317. (PMID: 28334352)
J Neural Eng. 2021 Jun 09;18(4):. (PMID: 34038873)
Neuropsychologia. 2021 Jan 8;150:107691. (PMID: 33227284)
Psychophysiology. 2017 Dec;54(12):1916-1928. (PMID: 28792606)
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:4101-5. (PMID: 26737196)
IEEE Trans Neural Syst Rehabil Eng. 2003 Jun;11(2):133-7. (PMID: 12899255)
Lancet. 2013 Nov 9;382(9904):1600-7. (PMID: 23827090)
Clin Electroencephalogr. 1991 Apr;22(2):83-96. (PMID: 2032348)
Brain Res Cogn Brain Res. 2003 Oct;17(3):637-50. (PMID: 14561451)
Neuroimage. 2018 Dec;183:47-61. (PMID: 30086409)
PLoS One. 2012;7(2):e30135. (PMID: 22355308)
Sci Rep. 2020 Feb 28;10(1):3667. (PMID: 32111868)
J Neurosci. 2012 Sep 5;32(36):12376-83. (PMID: 22956828)
Front Psychol. 2011 Sep 30;2:236. (PMID: 21994498)
Brain Topogr. 2013 Jul;26(3):378-96. (PMID: 23355112)
Neurosci Res. 2020 Jan;150:44-50. (PMID: 30768949)
PLoS One. 2013;8(2):e55557. (PMID: 23390539)
Neuroimage Clin. 2020;25:102145. (PMID: 31911342)
Proc IEEE Inst Electr Electron Eng. 2001 Jul 1;89(7):1107-1122. (PMID: 20824156)
PLoS Biol. 2016 Jun 29;14(6):e1002498. (PMID: 27355236)
Front Hum Neurosci. 2017 Feb 24;11:88. (PMID: 28286478)
Front Hum Neurosci. 2015 Oct 08;9:534. (PMID: 26500519)
Front Psychol. 2011 Apr 26;2:73. (PMID: 21687444)
Psychophysiology. 1979 Jan;16(1):53-5. (PMID: 758627)
J Neurosci. 2019 Oct 30;39(44):8679-8689. (PMID: 31533976)
J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499)
معلومات مُعتمدة: P20 GM113109 United States GM NIGMS NIH HHS; P20GM113109 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: auditory alpha; auditory perception; event-related desynchronization; source localization; time-frequency
تواريخ الأحداث: Date Created: 20240210 Date Completed: 20240215 Latest Revision: 20240316
رمز التحديث: 20240316
مُعرف محوري في PubMed: PMC10823759
DOI: 10.1002/hbm.26572
PMID: 38339905
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0193
DOI:10.1002/hbm.26572