دورية أكاديمية

Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L.

التفاصيل البيبلوغرافية
العنوان: Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L.
المؤلفون: Bhat A; Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India., Mishra S; Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India., Kaul S; Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India., Dhar MK; Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India. manojkdhar@rediffmail.com.
المصدر: Protoplasma [Protoplasma] 2024 Jul; Vol. 261 (4), pp. 749-769. Date of Electronic Publication: 2024 Feb 10.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Austria NLM ID: 9806853 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-6102 (Electronic) Linking ISSN: 0033183X NLM ISO Abbreviation: Protoplasma Subsets: MEDLINE
أسماء مطبوعة: Publication: <1998->: Wien ; New York : Springer
Original Publication: Leipzig : Verlag von Gebrüder Borntraeger, 1927-
مواضيع طبية MeSH: MicroRNAs*/genetics , MicroRNAs*/metabolism , Flowers*/genetics , Flowers*/growth & development , Flowers*/metabolism , Crocus*/genetics , Gene Expression Regulation, Plant*, Gene Expression Profiling ; Transcription Factors/genetics ; Transcription Factors/metabolism ; Plant Proteins/genetics ; Plant Proteins/metabolism
مستخلص: Crocus sativus is a valuable plant due to the presence of apocarotenoids in its stigma. Considerable work has been done in the past to understand the apocarotenoid biosynthetic pathway in saffron. However, the reports on understanding the regulation of flowering at the post-transcriptional level are meagre. The study aimed to discover the candidate miRNAs, target genes, transcription factors (TFs), and apocarotenoid biosynthetic pathway genes associated with the regulation and transition of flowering in C. sativus. In the present investigation, miRNA profiling was performed in flowering and non-flowering corms of saffron, along with expression analysis of apocarotenoid genes and transcription factors involved in the synthesis of secondary metabolites. Significant modulation in the expression of miR156, miR159, miR166, miR172, miR395, miR396, miR399, and miR408 gene families was observed. We obtained 36 known miRNAs (26 in flowering and 10 in non-flowering) and 64 novel miRNAs (40 in flowering and 24 in non-flowering) unique to specific tissues in our analysis. TFs, including CsMADS and CsMYb, showed significant modulation in expression in flowering tissue, followed by CsHB. Additionally, the miRNAs were predicted to be involved in carbohydrate metabolism, phytohormone signalling, regulation of flower development, and response to stress, cold, and defence. The comprehensive study has enhanced our understanding of the regulatory machinery comprising factors like phytohormones, abiotic stress, apocarotenoid genes, transcription factors, and miRNAs responsible for the synthesis of apocarotenoids and developmental processes during and after flowering.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Adjei MO, Zhou X, Mao M, Rafique F, Ma J (2021) MicroRNAs roles in plants secondary metabolism. Plant Signal Behav 16:1915590. https://doi.org/10.1080/15592324.2021.1915590. (PMID: 10.1080/15592324.2021.1915590)
Ahrazem O, Diretto G, Picazo JA, Fiore A, Rubio-Moraga A, Rial C (2019) The specialized roles in carotenogenesis and apocarotenogenesis of the phytoene synthase gene family in Saffron. Front Plant Sci 10:1–16. https://doi.org/10.3389/fpls.2019.00249. (PMID: 10.3389/fpls.2019.00249)
Arango J, Jourdan M, Geoffriau BP, Welsch R (2014) Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell 26(5):2223–2233. https://doi.org/10.1105/tpc.113.122127. (PMID: 10.1105/tpc.113.122127248589344079379)
Arora S, Pandey DK, Chaudhary B (2019) Target-mimicry based diminution of miRNA167 reinforced flowering-time phenotypes in tobacco via spatial-transcriptional biases of flowering associated miRNAs. Gene 682:67–80. https://doi.org/10.1016/j.gene.2018.10.008. (PMID: 10.1016/j.gene.2018.10.00830292869)
Baba SA, Mohiuddin T, Basu S et al (2015) Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. BMC Genomics 16:698. https://doi.org/10.1186/s12864-015-1894-5.
Bagri J, Yadav A, Anwar K, Dkhar J, Singla-Pareek SL, Pareek A (2017) Metabolic shift in sugars and amino acids regulates sprouting in Saffron corm. Sci Rep 7:11904. https://doi.org/10.1038/s41598-017-10528-2. (PMID: 10.1038/s41598-017-10528-2289284015605653)
Bhan B, Koul A, Sharma D, Manzoor MM, Kaul S, Gupta S et al (2019) Identification and expression profiling of miRNAs in two color variants of carrot (Daucus carota L.) using deep sequencing. PlosOne. https://doi.org/10.1371/journal.pone.0212746.
Bhat A, Mishra S, Kaul S, Dhar MK (2018) Elucidation and functional characterization of CsPSY and CsUGT promoters in Crocus sativus L. PlosOne 13:e0195348. https://doi.org/10.1371/journal.pone.0195348. (PMID: 10.1371/journal.pone.0195348)
Breitenbach J, Sandmann G (2005) ζ-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene. Planta 220:785. https://doi.org/10.1007/s00425-004-1395-2. (PMID: 10.1007/s00425-004-1395-215503129)
Cartolano M, Castillo R, Efremova N, Kuckenberg M, Zethof J, Gerats T et al (2007) A conserved microRNAs module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity. Nat Genet 39:901–905. https://doi.org/10.1038/ng2056. (PMID: 10.1038/ng205617589508)
Castillo R, Fernandez JA, Gomez-Gomez L (2005) Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiol 139:674–89. https://doi.org/10.1104/pp.105.067827. (PMID: 10.1104/pp.105.067827161838351255987)
CazzonellI CI, Pogson BJ (2010) Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15:266–74. https://doi.org/10.1016/j.tplants.2010.02.003. (PMID: 10.1016/j.tplants.2010.02.00320303820)
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20). https://doi.org/10.1093/nar/gni178.
Chen J, Zheng Y, Li Q, Wang Y, Chen L, He Y et al (2016) Identification of miRNAs and their targets through high throughput sequencing and degradome analysis in male and female Asparagus officinalis. BMC Plant Biol 16(80). https://doi.org/10.1186/s12870-016-0770-z.
Chen J, Zhou G, Dong Y, Qian X, Li J, Xu X et al (2021) Screening of key proteins affecting floral initiation of saffron under cold stress using iTRAQ-base proteomics. Front Plant Sci 12: 1–17. https://doi.org/10.3389/fpls.2021.644934.
Chuck G, Meeley R, Irish E, Sakai H, Hake S (2007) The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tassel seed6/indeterminate spikelet1. Nat Genet 39:1517–1521. https://doi.org/10.1038/ng.2007.20. (PMID: 10.1038/ng.2007.2018026103)
Dhar MK, Sharma M, Bhat A, Chrungoo N, Kaul S (2017) Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications. Brief Funct Genomics 16:336–47. https://doi.org/10.1093/bfgp/elx003. (PMID: 10.1093/bfgp/elx00328369196)
Frusciante S, Diretto G, Bruno M, Giuliano G (2014) Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in Saffron crocin biosynthesis. Pro Natl Acad Sci 111:12246–51. https://doi.org/10.1073/pnas.1404629111. (PMID: 10.1073/pnas.1404629111)
Guleria P, Goswami D, Yadav SK (2012) Computational identification of miRNAs and their targets from Crocus sativus L. Arch Biol Sci 64:65–70. https://doi.org/10.2298/ABS1201065G. (PMID: 10.2298/ABS1201065G)
Hong Y, Jackson S (2015) Floral induction and flower formation-the role and potential applications of miRNAs. Plant Biotechnol J 13(282):292. https://doi.org/10.1111/pbi.12340. (PMID: 10.1111/pbi.12340)
Hu J, Liu Y, Tang X, Rao H, Ren C, Chen J (2020) Transcriptome profiling of the flowering transition in saffron(Crocus sativus L.). Sci Rep 10:9680. https://doi.org/10.1038/s41598-020-66675-6. (PMID: 10.1038/s41598-020-66675-6325418927295807)
Isaacson T, Ohad I, Beyer P, Hirschberg J (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255. https://doi.org/10.1104/pp.104.052092. (PMID: 10.1104/pp.104.05209215557094535854)
Islam W, Tauqeer A, Waheed A, Zeng F (2022) MicroRNA mediated plant responses to nutrient stress. Int J Mol Sci 23:2562. https://doi.org/10.3390/ijms23052562. (PMID: 10.3390/ijms23052562352697008910084)
Jain M, Srivastava PL, Verma M, Ghangal R, Garg R (2016) De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 6:22456. https://doi.org/10.1038/srep22456. (PMID: 10.1038/srep22456269364164776159)
Jose-Santhi J, Sheikh FR, Kalia D, Singh RK (2023) Sugar metabolism mediates temperature-dependent flowering induction in saffron (Crocus sativus L.). Environ Exp Bot https://doi.org/10.1016/j.envexpbot.2022.105150.
Kim W, Ahn JH (2016) MicroRNA-target interactions: important signaling modules regulating flowering time in diverse plant species. Crit Rev Plant Sci 33:470–485. https://doi.org/10.1080/07352689.2014.917533. (PMID: 10.1080/07352689.2014.917533)
Kothari D, Thakur M, Joshi R, Kumar A, Kumar P (2021) Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front Plant Sci 12:1–12. https://doi.org/10.3389/fpls.2021.657819. (PMID: 10.3389/fpls.2021.657819)
Kouhi F, Sorkheh K, Ercisli S (2020) MicroRNA expression patterns unveil differential expression of conserved miRNAs and target genes against abiotic stress in safflower. PLosOne 15:e0228850. https://doi.org/10.1371/journal.pone.0228850. (PMID: 10.1371/journal.pone.0228850)
Kumar A, Chaudhary A, Kaur N, Kaur H (2021) Wake up: it’s time to bloom. Russ J Plant Physiol 68:579–595. https://doi.org/10.1134/S1021443721040075. (PMID: 10.1134/S1021443721040075)
Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C (2019) Structural basis for plant MADS transcription factor oligomerization. Comput Struct Biotechnol J 17:946–953. https://doi.org/10.1016/j.csbj.2019.06.014. (PMID: 10.1016/j.csbj.2019.06.014313603336639411)
Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322. https://doi.org/10.1242/dev.01320. (PMID: 10.1242/dev.0132015294871)
Li C, Zhang B (2015) MicroRNAs in control of plant development. J Cell Physiol 321:303–313. https://doi.org/10.1002/jcp.25125. (PMID: 10.1002/jcp.25125)
Li N, Yang T, Guo Z, Wang Q, Chai M, Wu M et al (2020) Maize microRNA166 inactivation confers plant development and abiotic stress resistance. Int J Mol Sci 21:9506. https://doi.org/10.3390/ijms21249506. (PMID: 10.3390/ijms21249506333275087764941)
Lian H, Wang L, Ma N, Zhou CM, Han L, Zhang TQ (2021) Redundant and specific roles of individual MIR172 genes in plant development. PLOS Biol 19:2e3001044. https://doi.org/10.1371/journal.pbio.3001044. (PMID: 10.1371/journal.pbio.3001044)
Liang G, He H, Li Y, Wang F, Yu D (2014) Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol. 164:249–258. https://doi.org/10.1104/pp.113.225144. (PMID: 10.1104/pp.113.22514424285851)
Lin F, Cao J, Yuan J, Liang Y, Li J (2021) Integration of light and brassinosteroid signalling during seedling establishment. Int J Mol Sci 22:12971. https://doi.org/10.3390/ijms222312971. (PMID: 10.3390/ijms222312971348847718657978)
Liu S, Mi X, Zhang R, An Y, Zhou O, Yang T (2019) Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta 250:111–1129. https://doi.org/10.1007/s00425-019-03207-1. (PMID: 10.1007/s00425-019-03207-1)
Ma J, Li J, Xu Z, Wang F, Xiong A (2018) Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochimmica et Biophysica Sinica 50(5):481–490. https://doi.org/10.1093/abbs/gmy027. (PMID: 10.1093/abbs/gmy027)
Madrid E, Chandler JW, Coupland G (2021) Gene regulatory networks controlled by FLOWERING LOCUS C that confer variation in seasonal flowering and life history. J Exp Bot 2:4–14. https://doi.org/10.1093/jxb/eraa216. (PMID: 10.1093/jxb/eraa216)
Matthews PD, Luo R, Wurtzel ET (2003) Maize phytoene desaturase and zeta-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. J Exp Bot 54:2215–30. https://doi.org/10.1093/jxb/erg235. (PMID: 10.1093/jxb/erg23514504297)
Mishra R, Mohanty JN, Chand SK, Joshi RK (2018) Can-miRn37a mediated suppression of ethylene response factors enhance the resistance of chilli against anthracnose pathogen Colletotrichum truncatum L. Plant Sci 267:135–147. https://doi.org/10.1016/j.plantsci.2017.12.001. (PMID: 10.1016/j.plantsci.2017.12.00129362092)
Mohanty JN, Chand SK, Joshi RK (2019) Multiple microRNAs regulate the floral development and sex differentiation in the dioecious cucurbit Coccinia grandis (L.) Voigt. Plant Mol Biol Rep 37:111–128. https://doi.org/10.1007/s11105-019-01143-8. (PMID: 10.1007/s11105-019-01143-8)
Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8:68–82. https://doi.org/10.1016/j.molp.2014.12.007. (PMID: 10.1016/j.molp.2014.12.00725578273)
Peng C, Chen X, Wang X, Xu X, Wei W, Wang C, Xu J (2018) Comparative analysis of miRNA expression profiles in transgenic and non-transgenic rice using miRNA-Seq. Sci Rep 8:338. https://doi.org/10.1038/s41598-017-18723-x. (PMID: 10.1038/s41598-017-18723-x293216485762784)
Perotti MF, Ribone PA, Chan RL (2017) Plant transcription factors from the homeodomain-leucine zipper family I. Role in development and stress responses. IUBMB Life 69(5):280–289. https://doi.org/10.1002/iub.1619. (PMID: 10.1002/iub.161928337836)
Raihan T, Geneve RL, Perry SE, Lopez CMR (2021) The regulation of plant vegetative phase transition and rejuvenation: miRNAs, a key regulator. Epigenomes 5:24–34. https://doi.org/10.3390/epigenomes5040024. (PMID: 10.3390/epigenomes5040024349682488715473)
Renau-Morata B, Nebauer SG, Víctor Carpintero VG, Joaquín C, Minguet EG, Mozos MDL, Molina RV (2021) Flower induction and development in saffron: timing and hormone signalling pathways. Ind Crops Prod 164:113370. https://doi.org/10.1016/j.indcrop.2021.113370. (PMID: 10.1016/j.indcrop.2021.113370)
Sharma M, Kaul S, Dhar MK (2019) Transcript profiling of carotenoid/apocarotenoid biosynthesis genes during corm development of saffron (Crocus sativus L.). Protoplasma 256:249–260. https://doi.org/10.1007/s00709-018-1296-z. (PMID: 10.1007/s00709-018-1296-z30078109)
Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod and temperature-sensing in leaves. Trends Plant Sci 18:10. https://doi.org/10.1016/j.tplants.2013.05.003. (PMID: 10.1016/j.tplants.2013.05.003)
Sun LM, Ai XY, Li WY, Guo WW, Deng XX, Hu CG et al (2012) Identification and comparative profiling of miRNAs in an early flowering mutant of trifoliate orange and its wild type by genome-wide deep sequencing. PlosOne 7:1–19. https://doi.org/10.1371/journal.pone.0043760. (PMID: 10.1371/journal.pone.0043760)
Sun Y, Xiong X, Wang Q, Zhu L, Wang L, He Y, Zeng H (2021) Integrated analysis of small RNA, transcriptome, and degradome sequencing reveals the MiR156, MiR5488 and MiR399 are involved in the regulation of male sterility in PTGMS rice. Int J Mol Sci 22:2260. https://doi.org/10.3390/ijms22. (PMID: 10.3390/ijms22336683767956645)
Swida-Barteczka A, Szweykowska-Kulinska Z (2019) Micromanagement of developmental and stress-induced senescence: the emerging role of microRNAs. Genes 10:210. https://doi.org/10.3390/genes10030210. (PMID: 10.3390/genes10030210308710886470504)
Taheri-Dehkordi A, Naderi R, Martnelli F, Salami SA (2021) Computational screening of miRNAs and their targets in saffron (Crocus sativus L.) by transcriptome mining. Planta 254:1–22. https://doi.org/10.1007/s00425-021-03761-7. (PMID: 10.1007/s00425-021-03761-7)
Tsaftaris AS, Pasentsis K, Polidoros AN (2005) Isolation of a differentially spliced C-type flower specific AG-like MADS-box gene from Crocus sativus and characterization of its expression. Biologia Plantarum 49(4):499–504. https://doi.org/10.1007/s10535-005-0041-6. (PMID: 10.1007/s10535-005-0041-6)
Wu G, Park Y, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759. https://doi.org/10.1016/j.cell.2009.06.031. (PMID: 10.1016/j.cell.2009.06.031197034002732587)
Xing L, Zhang D, Zhao C, Li Y, Ma JN (2016) An, shoot bending promotes flower bud formation by miRNA mediated regulation in apple (Malus domestica Borkh.). Plant Biotechnol J 14:749–770. https://doi.org/10.1111/pbi.12425. (PMID: 10.1111/pbi.1242526133232)
Yang T, Wang Y, Teotia S, Wang Z, Shi C, Sun H (2019) The interaction between miR160 and miR165/166 in the control of leaf development and drought tolerance in Arabidopsis. Sci Rep 9:2832. https://doi.org/10.1038/s41598-019-39397-7. (PMID: 10.1038/s41598-019-39397-7308089696391385)
Yu Q, Jin X, Lui C, Wen Y (2022) An integrated analysis of transcriptome and miRNA sequencing provides insights into the dynamic regulations during flower morphogenesis in Petunia. Horticulturae 8:284. https://doi.org/10.3390/horticulturae8040284. (PMID: 10.3390/horticulturae8040284)
Yuan S, Li Z, Yua N, Hu Q, Zhou M, Zhao J (2020) MiR396 is involved in plant response to vernalization and flower development in Agrostis stolonifera. Hortic Res 7:173. https://doi.org/10.1038/s41438-020-00394-x. (PMID: 10.1038/s41438-020-00394-x333284347603517)
Zhu Q, Helliwell CA (2012) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495. https://doi.org/10.1093/jxb/erq295. (PMID: 10.1093/jxb/erq295)
Zinati Z, Shamloo-Dashtpagerdi R, Behpouri A (2016) In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma. Mol Biol Res Commun 5:233–246. (PMID: 282616275326487)
معلومات مُعتمدة: BT/PR5397/PBD/16/974/ 2012 DBT; BT/PR5409/PBD/16/977/2012 DBT
فهرسة مساهمة: Keywords: Crocus sativus; Apocarotenoid pathway; Flowering; Regulation; Transcription factor; miRNA
المشرفين على المادة: 0 (MicroRNAs)
0 (Transcription Factors)
0 (Plant Proteins)
تواريخ الأحداث: Date Created: 20240210 Date Completed: 20240624 Latest Revision: 20240624
رمز التحديث: 20240624
DOI: 10.1007/s00709-024-01931-4
PMID: 38340171
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-6102
DOI:10.1007/s00709-024-01931-4