دورية أكاديمية

Differential Glycoform Analysis of MUC1 Derived from Biological Specimens Using an Antibody-Overlay Lectin Microarray.

التفاصيل البيبلوغرافية
العنوان: Differential Glycoform Analysis of MUC1 Derived from Biological Specimens Using an Antibody-Overlay Lectin Microarray.
المؤلفون: Matsuda A; Sysmex Corporation, Reagent Engineering, Protein Technology Group, Hyogo, Japan., Boottanun P; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan., Koizumi S; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan., Nagai M; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan., Kuno A; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan. atsu-kuno@aist.go.jp.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2763, pp. 223-236.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Lectins*/metabolism , Mucin-1*/metabolism, Antibodies ; Microarray Analysis/methods ; Immunohistochemistry
مستخلص: The association between altered glycosylation of MUC1 and various disease events has sparked significant interest. However, analytical technologies to investigate the disease-related glycoforms of endogenous MUC1 in blood and tissue specimens are limited. Therefore, we devised a reliable technique for differential analysis of endogenous MUC1 glycoforms based on an antibody-assisted lectin microarray. Its highly sensitive detection aids in analyzing soluble MUC1 from relatively small amounts of serum via a simple enrichment process. Micro-/macro-dissection of the MUC1-positive region is combined with glycoform analysis of the membrane-tethered MUC1. Thus, we have optimized the protocol for sample qualification using immunohistochemistry, sample pretreatment for tissue sections, protein extraction, purification via immunoprecipitation, and the antibody-overlay lectin microarray, which are sequentially essential for differential glycoform analysis of endogenous MUC1.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Kuno A, Matsuda A, Unno S et al (2014) Differential glycan analysis of an endogenous glycoprotein: toward clinical implementation – from sample pretreatment to data standardization. Methods Mol Biol 1200:265–285. (PMID: 10.1007/978-1-4939-1292-6_2325117242)
Kuno A, Kato Y, Matsuda A et al (2009) Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Mol Cell Proteomics 8:99–108. (PMID: 10.1074/mcp.M800308-MCP20018697734)
Li Y, Tao SC, Bova GS et al (2011) Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 83:8509–8516. (PMID: 10.1021/ac201452f219750783258529)
Matsuda A, Higashi M, Nakagawa T et al (2017) Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. Lab Invest 97:1103–1113. (PMID: 10.1038/labinvest.2017.5328581490)
Wagatsuma T, Nagai-Okatani C, Matsuda A et al (2020) Discovery of pancreatic ductal adenocarcinoma-related aberrant glycosylations: a multilateral approach of lectin microarray-based tissue glycomic profiling with public transcriptomic datasets. Front Oncol 10:338. (PMID: 10.3389/fonc.2020.00338322320097082313)
Fujihira H, Takakura D, Matsuda A et al (2021) Bisecting-GlcNAc on Asn388 is characteristic to ERC/mesothelin expressed on epithelioid mesothelioma cells. J Biochem 170:317–326. (PMID: 10.1093/jb/mvab044337926998510291)
Kuwamoto K, Takeda Y, Shirai A et al (2010) Identification of various types of α2-HS glycoprotein in sera of patients with pancreatic cancer: possible implication in resistance to protease treatment. Mol Med Rep 3:651–656. (PMID: 21472293)
Kuno A, Ikehara Y, Tanaka Y et al (2011) Multilectin assay for detecting fibrosis-specific glyco-alteration by means of lectin microarray. Clin Chem 57:48–56. (PMID: 10.1373/clinchem.2010.15134021047982)
Kuno A, Ikehara Y, Tanaka Y et al (2013) A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep 3:1065. (PMID: 10.1038/srep01065233232093545220)
Kaji H, Ocho M, Togayachi A et al (2013) Glycoproteomic discovery of serological biomarker candidates for HCV/HBV infection-associated liver fibrosis and hepatocellular carcinoma. J Proteome Res 12:2630–2640. (PMID: 10.1021/pr301217b23586699)
Narimatsu Y, Kuno A, Ito H et al (2014) IgA nephropathy caused by unusual polymerization of IgA1 with aberrant N-glycosylation in a patient with monoclonal immunoglobulin deposition disease. PLoS One 9:e91079. (PMID: 10.1371/journal.pone.0091079246518393961232)
Yuan S, Li Q, Zhang Y et al (2015) Changes in anti-thyroglobulin IgG glycosylation patterns in Hashimoto’s thyroiditis patients. J Clin Endocrinol Metabol 100:717–724. (PMID: 10.1210/jc.2014-2921)
Liang Y, Ma T, Thakur A et al (2015) Differentially expressed glycosylated patterns of α-1-antitrypsin as serum biomarkers for the diagnosis of lung cancer. Glycobiology 25:331–340. (PMID: 10.1093/glycob/cwu11525347993)
Matsuda A, Kuno A, Nakagawa T et al (2015) Lectin microarray-based sero-biomarker verification targeting aberrant O-linked glycosylation on mucin 1. Anal Chem 87:7274–7281. (PMID: 10.1021/acs.analchem.5b0132926091356)
Takeshita M, Kuno A, Suzuki K et al (2016) Alteration of matrix metalloproteinase-3 O-glycan structure as a biomarker for disease activity of rheumatoid arthritis. Arthritis Res Ther 18:112. (PMID: 10.1186/s13075-016-1013-2272094304875599)
Wagatsuma T, Kuno A, Angata K et al (2018) Highly sensitive glycan profiling of hepatitis B viral particles and a simple method for Dane particle enrichment. Anal Chem 90:10196–10203. (PMID: 10.1021/acs.analchem.8b0103030074767)
Zou X, Yao F, Yang F et al (2019) Glycomic signatures of plasma IgG improve preoperative prediction of the invasiveness of small lung nodules. Molecules 25:28. (PMID: 10.3390/molecules25010028318617776982969)
Giron LB, Papasavvas E, Azzoni L et al (2020) Plasma and antibody glycomic biomarkers of time to HIV rebound and viral setpoint. AIDS 34:681–686. (PMID: 10.1097/QAD.000000000000247631972605)
Hu C, Zhang P, Li L et al (2021) Assessing serum IgG4 glycosylation profiles of IgG4-related disease using lectin microarray. Clin Exp Rheumatol 39:393–402. (PMID: 10.55563/clinexprheumatol/2i3uvr32662414)
Zeng X, Li S, Tang S et al (2021) Changes of serum IgG glycosylation patterns in primary biliary cholangitis patients. Front Immunol 12:669137. (PMID: 10.3389/fimmu.2021.669137342489478267527)
Liu WL, Cao YM, Liao T et al (2021) Multiple lectin assays in detecting glycol-alteration status of serum NRG1 in papillary thyroid cancer. Transl Cancer Res 10:3218–3224. (PMID: 10.21037/tcr-20-1256351166288798758)
Noro E, Matsuda A, Kyoutou T et al (2021) N-glycan structures of Wisteria floribunda agglutinin-positive Mac2 binding protein in the serum of patients with liver fibrosis†. Glycobiology 31:1268–1278. (PMID: 10.1093/glycob/cwab06034192302)
Kazuno S, Fujimura T, Fujime M, Miura Y, Ueno T (2021) O-glycosylated clusterin as a sensitive marker for diagnosing early stages of prostate cancer. Prostate 81:170–181. (PMID: 10.1002/pros.2409433347638)
Zhang Y, Zhang S, Liu J et al (2022) Identification of serum glycobiomarkers for Hepatocellular Carcinoma using lectin microarrays. Front Immunol 13:973993. (PMID: 10.3389/fimmu.2022.973993363414389634732)
Li S, Meng J, Xu F et al (2022) IgG glycosylation profiling of peripheral artery diseases with lectin microarray. J Clin Med 11:5727. (PMID: 10.3390/jcm11195727362335959572750)
Li S, Meng J, Lv Y et al (2022) Changes in serum IgG glycosylation patterns for abdominal aortic aneurysm patients. J Cardiovasc Dev Dis 9:291. (PMID: 361354369502462)
Uenoyama Y, Matsuda A, Ohashi K et al (2022) Development and evaluation of a robust sandwich immunoassay system detecting serum WFA-reactive IgA1 for diagnosis of IgA nephropathy. Int J Mol Sci 23:5165. (PMID: 10.3390/ijms23095165355635559104065)
Li X, Bai J, Li S et al (2022) Association of the serum IgG glycosylation with disease activity of anti-transcription intermediary factor 1 gamma positive dermatomyositis. Clin Exp Rheumato 41:230.
Liu L, Li J, Yang Y, Hu C, Tian X (2023) Altered glycosylation profiles of serum IgG in Takayasu arteritis. Eur J Med Res 28:69. (PMID: 10.1186/s40001-023-01035-4367553109906894)
Futakawa S, Nara K, Miyajima M et al (2012) A unique N-glycan on human transferrin in CSF: a possible biomarker for iNPH. Neurobiol Aging 33:1807–1815. (PMID: 10.1016/j.neurobiolaging.2011.02.02321459485)
Matsuda A, Kuno A, Matsuzaki H et al (2013) Glycoproteomics-based cancer marker discovery adopting dual enrichment with Wisteria floribunda agglutinin for high specific glyco-diagnosis of cholangiocarcinoma. J Proteome 85:1–11. (PMID: 10.1016/j.jprot.2013.04.017)
Meany DL, Hackler L Jr, Zhang H, Chan DW (2011) Tyramide signal amplification for antibody-overlay lectin microarray: a strategy to improve the sensitivity of targeted glycan profiling. J Proteome Res 10:1425–1431. (PMID: 10.1021/pr101087321133419)
Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60. (PMID: 10.1038/nrc125114681689)
Kufe DW (2009) Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 9:874–885. (PMID: 10.1038/nrc2761199356762951677)
Posey AD Jr, Schwab RD, Boesteanu AC et al (2016) Engineered CAR T cells targeting the cancer-associated TN-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 44:1444–1454. (PMID: 10.1016/j.immuni.2016.05.014273327335358667)
Storr SJ, Royle L, Chapman CJ et al (2008) The O-linked glycosylation of secretory/shed MUC1 from an advanced breast cancer patient’s serum. Glycobiology 18:456–462. (PMID: 10.1093/glycob/cwn02218332077)
Andersch-Björkman Y, Thomsson KA, Holmén Larsson JM, Ekerhovd E, Hansson GC (2007) Large scale identification of proteins, mucins, and their O-glycosylation in the endocervical mucus during the menstrual cycle. Mol Cell Proteomics 6:708–716. (PMID: 10.1074/mcp.M600439-MCP20017220477)
Takeuchi H, Kato K, Denda-Nagai K et al (2002) The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialyl alpha 2-3galactosyl beta 1-3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. J Immunol Methods 270:199–209. (PMID: 10.1016/S0022-1759(02)00298-312379325)
Kokubu R, Ohno S, Kuratani H et al (2022) O-Glycan-dependent interaction between MUC1 glycopeptide and MY.1E12 antibody by NMR, molecular dynamics and docking simulations. Int J Mol Sci 23:143. (PMID: 10.3390/ijms23147855)
Matsuda A, Kuno A, Ishida H et al (2008) Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Re Commun 370:259–263. (PMID: 10.1016/j.bbrc.2008.03.090)
فهرسة مساهمة: Keywords: Glycan profiling; Lectin microarray; MUC1; Serum; Tissue section
المشرفين على المادة: 0 (Lectins)
0 (Mucin-1)
0 (Antibodies)
تواريخ الأحداث: Date Created: 20240212 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
DOI: 10.1007/978-1-0716-3670-1_19
PMID: 38347414
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3670-1_19