دورية أكاديمية

Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1.

التفاصيل البيبلوغرافية
العنوان: Structural and mechanistic characterization of bifunctional heparan sulfate N-deacetylase-N-sulfotransferase 1.
المؤلفون: Mycroft-West CJ; The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK., Abdelkarim S; The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK., Duyvesteyn HME; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK., Gandhi NS; Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.; School of Chemistry and Physics, Queensland University of Technology, QLD 4000, Brisbane, Australia.; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia., Skidmore MA; Centre for Glycoscience Research and Training, Keele University, ST5 5BG, Newcastle-Under-Lyme, UK., Owens RJ; The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK.; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK., Wu L; The Rosalind Franklin Institute, Harwell Science & Innovation Campus, OX11 0QX, Didcot, UK. liang.wu@rfi.ac.uk.; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, OX3 7BN, Oxford, UK. liang.wu@rfi.ac.uk.
المصدر: Nature communications [Nat Commun] 2024 Feb 13; Vol. 15 (1), pp. 1326. Date of Electronic Publication: 2024 Feb 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Heparitin Sulfate*/metabolism , Sulfotransferases*/metabolism, Humans ; Cryoelectron Microscopy ; Catalytic Domain ; Extracellular Matrix/metabolism
مستخلص: Heparan sulfate (HS) polysaccharides are major constituents of the extracellular matrix, which are involved in myriad structural and signaling processes. Mature HS polysaccharides contain complex, non-templated patterns of sulfation and epimerization, which mediate interactions with diverse protein partners. Complex HS modifications form around initial clusters of glucosamine-N-sulfate (GlcNS) on nascent polysaccharide chains, but the mechanistic basis underpinning incorporation of GlcNS itself into HS remains unclear. Here, we determine cryo-electron microscopy structures of human N-deacetylase-N-sulfotransferase (NDST)1, the bifunctional enzyme primarily responsible for initial GlcNS modification of HS. Our structures reveal the architecture of both NDST1 deacetylase and sulfotransferase catalytic domains, alongside a non-catalytic N-terminal domain. The two catalytic domains of NDST1 adopt a distinct back-to-back topology that limits direct cooperativity. Binding analyses, aided by activity-modulating nanobodies, suggest that anchoring of the substrate at the sulfotransferase domain initiates the NDST1 catalytic cycle, providing a plausible mechanism for cooperativity despite spatial domain separation. Our data shed light on key determinants of NDST1 activity, and describe tools to probe NDST1 function in vitro and in vivo.
(© 2024. The Author(s).)
References: Esko, J. D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest 108, 169–173 (2001). (PMID: 1145786720303310.1172/JCI200113530)
Sarrazin, S., Lamanna, W. C. & Esko, J. D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, a004952 (2011). (PMID: 21690215311990710.1101/cshperspect.a004952)
Pellegrini, L. Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Curr. Opin. Struct. Biol. 11, 629–634 (2001). (PMID: 1178576610.1016/S0959-440X(00)00258-X)
Yan, D. & Lin, X. Shaping morphogen gradients by proteoglycans. Cold Spring Harb. Perspect. Biol. 1, a002493 (2009). (PMID: 20066107277363510.1101/cshperspect.a002493)
Lim, H. C., Multhaupt, H. A. & Couchman, J. R. Cell surface heparan sulfate proteoglycans control adhesion and invasion of breast carcinoma cells. Mol. Cancer 14, 15 (2015). (PMID: 25623282432619310.1186/s12943-014-0279-8)
Christianson, H. C. & Belting, M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 35, 51–55 (2014). (PMID: 2414515210.1016/j.matbio.2013.10.004)
Bode, L. et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J. Clin. Invest. 118, 229–238 (2008). (PMID: 1806430510.1172/JCI32335)
Clausen, T. M. et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 183, 1043–1057.e15 (2020). (PMID: 32970989748998710.1016/j.cell.2020.09.033)
Mycroft-West, C. J. et al. Heparin inhibits cellular invasion by SARS-CoV-2: structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thromb. Haemost. 120, 1700–1715 (2020). (PMID: 33368089786922410.1055/s-0040-1721319)
Shukla, D. & Spear, P. G. Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J. Clin. Invest. 108, 503–510 (2001). (PMID: 1151872120941210.1172/JCI200113799)
Rabenstein, D. L. Heparin and heparan sulfate: structure and function. Nat. Prod. Rep. 19, 312–331 (2002). (PMID: 1213728010.1039/b100916h)
Meneghetti, M. C. et al. Heparan sulfate and heparin interactions with proteins. J. R. Soc. Interface 12, 0589 (2015). (PMID: 2628965710.1098/rsif.2015.0589)
Kreuger, J. & Kjellen, L. Heparan sulfate biosynthesis: regulation and variability. J. Histochem. Cytochem. 60, 898–907 (2012). (PMID: 23042481352788910.1369/0022155412464972)
Leisico, F. et al. Structure of the human heparan sulfate polymerase complex EXT1-EXT2. Nat. Commun. 13, 7110 (2022). (PMID: 36402845967575410.1038/s41467-022-34882-6)
Wilson, L. F. L. et al. The structure of EXTL3 helps to explain the different roles of bi-domain exostosins in heparan sulfate synthesis. Nat. Commun. 13, 3314 (2022). (PMID: 35676258917802910.1038/s41467-022-31048-2)
Li, H. et al. Structural basis for heparan sulfate co-polymerase action by the EXT1-2 complex. Nat. Chem. Biol. 19, 565–574 (2023). (PMID: 365932751016000610.1038/s41589-022-01220-2)
Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem 71, 435–471 (2002). (PMID: 1204510310.1146/annurev.biochem.71.110601.135458)
Dou, W., Xu, Y., Pagadala, V., Pedersen, L. C. & Liu, J. Role of deacetylase activity of N-deacetylase/N-sulfotransferase 1 in forming N-sulfated domain in heparan sulfate. J. Biol. Chem. 290, 20427–20437 (2015). (PMID: 26109066453644810.1074/jbc.M115.664409)
Annaval, T. et al. Heparan sulfate proteoglycans biosynthesis and post synthesis mechanisms combine few enzymes and few core proteins to generate extensive structural and functional diversity. Molecules 25, 4215 (2020). (PMID: 32937952757049910.3390/molecules25184215)
Sheng, J., Liu, R., Xu, Y. & Liu, J. The dominating role of N-deacetylase/N-sulfotransferase 1 in forming domain structures in heparan sulfate. J. Biol. Chem. 286, 19768–19776 (2011). (PMID: 21454625310335510.1074/jbc.M111.224311)
Carlsson, P., Presto, J., Spillmann, D., Lindahl, U. & Kjellen, L. Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains. J. Biol. Chem. 283, 20008–20014 (2008). (PMID: 1848760810.1074/jbc.M801652200)
Kjellen, L. Glucosaminyl N-deacetylase/N-sulphotransferases in heparan sulphate biosynthesis and biology. Biochem. Soc. Trans. 31, 340–342 (2003). (PMID: 1265363310.1042/bst0310340)
Pikas, D. S., Eriksson, I. & Kjellen, L. Overexpression of different isoforms of glucosaminyl N-deacetylase/N-sulfotransferase results in distinct heparan sulfate N-sulfation patterns. Biochemistry 39, 4552–4558 (2000). (PMID: 1075800510.1021/bi992524l)
Aikawa, J. & Esko, J. D. Molecular cloning and expression of a third member of the heparan sulfate/heparin GlcNAc N-deacetylase/ N-sulfotransferase family. J. Biol. Chem. 274, 2690–2695 (1999). (PMID: 991579910.1074/jbc.274.5.2690)
Aikawa, J., Grobe, K., Tsujimoto, M. & Esko, J. D. Multiple isozymes of heparan sulfate/heparin GlcNAc N-deacetylase/GlcN N-sulfotransferase. Structure and activity of the fourth member, NDST4. J. Biol. Chem. 276, 5876–5882 (2001). (PMID: 1108775710.1074/jbc.M009606200)
Pallerla, S. R. et al. Altered heparan sulfate structure in mice with deleted NDST3 gene function. J. Biol. Chem. 283, 16885–16894 (2008). (PMID: 18385133242326310.1074/jbc.M709774200)
Grobe, K. et al. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 132, 3777–3786 (2005). (PMID: 1602051710.1242/dev.01935)
Ringvall, M. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem. 275, 25926–25930 (2000). (PMID: 1085290110.1074/jbc.C000359200)
Fan, G. et al. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. 467, 7–11 (2000). (PMID: 1066444610.1016/S0014-5793(00)01111-X)
Reuter, M. S. et al. NDST1 missense mutations in autosomal recessive intellectual disability. Am. J. Med. Genet. A 164A, 2753–2763 (2014). (PMID: 2512515010.1002/ajmg.a.36723)
Lencz, T. et al. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat. Commun. 4, 2739 (2013). (PMID: 2425334010.1038/ncomms3739)
Tzeng, S. T. et al. NDST4 is a novel candidate tumor suppressor gene at chromosome 4q26 and its genetic loss predicts adverse prognosis in colorectal cancer. PLoS ONE 8, e67040 (2013). (PMID: 23825612369254010.1371/journal.pone.0067040)
Kakuta, Y., Sueyoshi, T., Negishi, M. & Pedersen, L. C. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1. J. Biol. Chem. 274, 10673–10676 (1999). (PMID: 1019613410.1074/jbc.274.16.10673)
Atienza, J., Tkachyova, I., Tropak, M., Fan, X. & Schulze, A. Fluorometric coupled enzyme assay for N-sulfotransferase activity of N-deacetylase/N-sulfotransferase (NDST). Glycobiology 31, 1093–1101 (2021). (PMID: 3408000410.1093/glycob/cwab048)
Ly, M. et al. Analysis of E. coli K5 capsular polysaccharide heparosan. Anal. Bioanal. Chem. 399, 737–745 (2011). (PMID: 2040789110.1007/s00216-010-3679-7)
Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014). (PMID: 24577359429763910.1038/nprot.2014.039)
Shi, X. & Jarvis, D. L. Protein N-glycosylation in the baculovirus-insect cell system. Curr. Drug Targets 8, 1116–1125 (2007). (PMID: 17979671364735510.2174/138945007782151360)
Bamford, N. C. et al. Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation. Nat. Commun. 11, 2450 (2020). (PMID: 32415073722906210.1038/s41467-020-16144-5)
Burger, M. & Chory, J. Structural and chemical biology of deacetylases for carbohydrates, proteins, small molecules and histones. Commun. Biol. 1, 217 (2018). (PMID: 30534609628162210.1038/s42003-018-0214-4)
Ahangar, M. S. et al. Structural and functional determination of homologs of the Mycobacterium tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA). J. Biol. Chem. 293, 9770–9783 (2018). (PMID: 29728457601647410.1074/jbc.RA118.002597)
Boittier, E. D., Burns, J. M., Gandhi, N. S. & Ferro, V. GlycoTorch vina: docking designed and tested for glycosaminoglycans. J. Chem. Inf. Model 60, 6328–6343 (2020). (PMID: 3315224910.1021/acs.jcim.0c00373)
Wei, Z., Swiedler, S. J., Ishihara, M., Orellana, A. & Hirschberg, C. B. A single protein catalyzes both N-deacetylation and N-sulfation during the biosynthesis of heparan sulfate. Proc. Natl Acad. Sci. USA 90, 3885–3888 (1993). (PMID: 84839074641010.1073/pnas.90.9.3885)
Riesenfeld, J., Hook, M. & Lindahl, U. Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. J. Biol. Chem. 255, 922–928 (1980). (PMID: 676614110.1016/S0021-9258(19)86121-5)
Kellokumpu, S. Golgi pH, ion and redox homeostasis: how much do they really matter? Front. Cell Dev. Biol. 7, 93 (2019). (PMID: 31263697658480810.3389/fcell.2019.00093)
Boraston, A. B., Bolam, D. N., Gilbert, H. J. & Davies, G. J. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781 (2004). (PMID: 15214846113395210.1042/BJ20040892)
Vallet, S. D. et al. Functional and structural insights into human N-deacetylase/N-sulfotransferase activities. Proteoglycan Res. 1, e8 (2023). (PMID: 10.1002/pgr2.8)
Westling, C. & Lindahl, U. Location of N-unsubstituted glucosamine residues in heparan sulfate. J. Biol. Chem. 277, 49247–49255 (2002). (PMID: 1237479010.1074/jbc.M209139200)
Traenkle, B. & Rothbauer, U. Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front. Immunol. 8, 1030 (2017). (PMID: 28883823557380710.3389/fimmu.2017.01030)
Doria-Rose, N. A. & Joyce, M. G. Strategies to guide the antibody affinity maturation process. Curr. Opin. Virol. 11, 137–47 (2015). (PMID: 25913818445629410.1016/j.coviro.2015.04.002)
Xu, Y. et al. Structure based substrate specificity analysis of heparan sulfate 6-o-sulfotransferases. ACS Chem. Biol. 12, 73–82 (2017). (PMID: 2810368810.1021/acschembio.6b00841)
Wander, R. et al. Structural and substrate specificity analysis of 3-O-sulfotransferase isoform 5 to synthesize heparan sulfate. ACS Catal. 11, 14956–14966 (2021). (PMID: 35223137886540510.1021/acscatal.1c04520)
Tsutsui, Y., Ramakrishnan, B. & Qasba, P. K. Crystal structures of beta-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. J. Biol. Chem. 288, 31963–31970 (2013). (PMID: 24052259381479210.1074/jbc.M113.509984)
Pedersen, L. C. et al. Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275, 34580–34585 (2000). (PMID: 1094600110.1074/jbc.M007399200)
Liu, C. et al. Molecular mechanism of substrate specificity for heparan sulfate 2-O-sulfotransferase. J. Biol. Chem. 289, 13407–13418 (2014). (PMID: 24652287403634910.1074/jbc.M113.530535)
Debarnot, C. et al. Substrate binding mode and catalytic mechanism of human heparan sulfate d-glucuronyl C5 epimerase. Proc. Natl Acad. Sci. USA 116, 6760–6765 (2019). (PMID: 30872481645273910.1073/pnas.1818333116)
Briggs, D. C. & Hohenester, E. Structural basis for the initiation of glycosaminoglycan biosynthesis by human xylosyltransferase 1. Structure 26, 801–809.e3 (2018). (PMID: 29681470599232610.1016/j.str.2018.03.014)
Liu, H. & Naismith, J. H. An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol. 8, 91 (2008). (PMID: 19055817262976810.1186/1472-6750-8-91)
Lu, L. Y., Hsu, Y. C. & Yang, Y. S. Spectrofluorometric assay for monoamine-preferring phenol sulfotransferase (SULT1A3). Anal. Biochem 404, 241–243 (2010). (PMID: 2056637110.1016/j.ab.2010.06.001)
Thakar, D. et al. A quartz crystal microbalance method to study the terminal functionalization of glycosaminoglycans. Chem. Commun. (Camb.) 50, 15148–15151 (2014). (PMID: 2533883410.1039/C4CC06905F)
Su, D. et al. Analysis of protein-heparin interactions using a portable SPR instrument. PeerJ Anal. Chem. 4, e15 (2022). (PMID: 10.7717/peerj-achem.15)
Huo, J. et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat. Commun. 12, 5469 (2021). (PMID: 34552091845829010.1038/s41467-021-25480-z)
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020). (PMID: 3325783010.1038/s41592-020-00990-8)
Rubinstein, J. L. & Brubaker, M. A. Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol. 192, 188–195 (2015). (PMID: 2629632810.1016/j.jsb.2015.08.007)
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018). (PMID: 30412051625042510.7554/eLife.42166)
Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017). (PMID: 28671674553364910.1038/nmeth.4347)
Casanal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo-microscopy and crystallographic data. Protein Sci. 29, 1069–1078 (2020). (PMID: 31730249709672210.1002/pro.3791)
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D: Struct. Biol. 75, 861–877 (2019). (PMID: 3158891810.1107/S2059798319011471)
Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). (PMID: 3288110110.1002/pro.3943)
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007). (PMID: 1768153710.1016/j.jmb.2007.05.022)
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. D: Biol. Crystallogr 67, 386–394 (2011). (PMID: 2146045710.1107/S0907444911007281)
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). (PMID: 21988835326169910.1038/msb.2011.75)
Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021). (PMID: 3312507810.1093/nar/gkaa913)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust
المشرفين على المادة: 9050-30-0 (Heparitin Sulfate)
EC 2.8.2.- (Sulfotransferases)
تواريخ الأحداث: Date Created: 20240213 Date Completed: 20240215 Latest Revision: 20240217
رمز التحديث: 20240218
مُعرف محوري في PubMed: PMC10864358
DOI: 10.1038/s41467-024-45419-4
PMID: 38351061
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-45419-4