دورية أكاديمية

Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology.

التفاصيل البيبلوغرافية
العنوان: Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology.
المؤلفون: Saito S; Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan. saito@sahs.med.osaka-u.ac.jp.; Department of Advanced Medical Technologies, National Cerebral and Cardiovascular Center Research Institute, Suita, 564-8565, Japan. saito@sahs.med.osaka-u.ac.jp., Ueda J; Department of Medical Physics and Engineering, Area of Medical Imaging Technology and Science, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 560-0871, Japan.
المصدر: Radiological physics and technology [Radiol Phys Technol] 2024 Mar; Vol. 17 (1), pp. 47-59. Date of Electronic Publication: 2024 Feb 14.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Japan Country of Publication: Japan NLM ID: 101467995 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1865-0341 (Electronic) Linking ISSN: 18650333 NLM ISO Abbreviation: Radiol Phys Technol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Tokyo : Springer Japan
مواضيع طبية MeSH: Technology, Radiologic* , Radiology*, Animals ; Magnetic Resonance Imaging/methods ; Spectrum Analysis ; Physics
مستخلص: Magnetic resonance imaging (MRI) is an indispensable diagnostic imaging technique used in the clinical setting. MRI is advantageous over X-ray and computed tomography (CT), because the contrast provided depends on differences in the density of various organ tissues. In addition to MRI systems in hospitals, more than 100 systems are used for research purposes in Japan in various fields, including basic scientific research, molecular and clinical investigations, and life science research, such as drug discovery, veterinary medicine, and food testing. For many years, additional preclinical imaging studies have been conducted in basic research in the fields of radiation technology, medical physics, and radiology. The preclinical MRI research includes studies using small-bore and whole-body MRI systems. In this review, we focus on the animal study using small-bore MRI systems as "preclinical MRI". The preclinical MRI can be used to elucidate the pathophysiology of diseases and for translational research. This review will provide an overview of previous preclinical MRI studies such as brain, heart, and liver disease assessments. Also, we provide an overview of the utility of preclinical MRI studies in radiological physics and technology.
(© 2024. The Author(s).)
References: Shaffer A, Kwok SS, Naik A, Anderson AT, Lam F, Wszalek T, et al. Ultra-high-field MRI in the diagnosis and management of gliomas: a systematic review. Front Neurol. 2022;13: 857825. (PMID: 35449515901627710.3389/fneur.2022.857825)
Ni R. Magnetic resonance imaging in tauopathy animal models. Front Aging Neurosci. 2021;13: 791679. (PMID: 3514539210.3389/fnagi.2021.791679)
Mohr H, Foscarini A, Steiger K, Ballke S, Rischpler C, Schilling F, Pellegata NS. Imaging pheochromocytoma in small animals: preclinical models to improve diagnosis and treatment. EJNMMI Res. 2021;11(1):121. (PMID: 34894301866591410.1186/s13550-021-00855-x)
Clark DP, Badea CT. Advances in micro-CT imaging of small animals. Phys Med. 2021;88:175–92. (PMID: 34284331844722210.1016/j.ejmp.2021.07.005)
Zhou Y, Chen H, Ambalavanan N, Liu G, Antony VB, Ding Q, et al. Noninvasive imaging of experimental lung fibrosis. Am J Respir Cell Mol Biol. 2015;53(1):8–13. (PMID: 25679265456611610.1165/rcmb.2015-0032TR)
Saito S, Ninomiya K, Sawaya R. 12 usefulness of micro-CT in preclinical study. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2022;78(2):203–6. (PMID: 3518509910.6009/jjrt.780215)
Teramoto A, Saito S. 9. development of micro-CT and Its application of preclinical research. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(8):813–7. (PMID: 3012274610.6009/jjrt.2018_JSRT_74.8.813)
Saito S, Murase K. Detection and early phase assessment of radiation-induced lung injury in mice using micro-CT. PLoS ONE. 2012;7(9): e45960. (PMID: 23029340345434710.1371/journal.pone.0045960)
Saito S, Murase K. Visualization of mouse spinal cord microscopic structures by use of ex vivo quantitative micro-CT images. Radiol Phys Technol. 2013;6(1):7–13. (PMID: 2272962010.1007/s12194-012-0163-4)
Adler SS, Seidel J, Choyke PL. Advances in preclinical PET. Semin Nucl Med. 2022;52(3):382–402. (PMID: 35307164903872110.1053/j.semnuclmed.2022.02.002)
Shidahara M, Funaki Y, Watabe H. Noninvasive estimation of human radiation dosimetry of (18)F-FDG by whole-body small animal PET imaging in rats. Appl Radiat Isot. 2022;181: 110071. (PMID: 3495233210.1016/j.apradiso.2021.110071)
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics. 2021;21:98–109. (PMID: 33981826806525110.1016/j.omto.2021.03.006)
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, et al. Preclinical applications of multi-platform imaging in animal models of cancer. Cancer Res. 2021;81(5):1189–200. (PMID: 3326212710.1158/0008-5472.CAN-20-0373)
Masuda K, Taenaka H, Asanuma T, Nakatani S. Comparison of the effects of angiotensin II receptor antagonist monotherapy and combination therapy with a diuretic on cardiac function in spontaneously hypertensive rats. J Echocardiogr. 2012;10(4):125–31. (PMID: 2727834710.1007/s12574-012-0141-1)
Nakano S, Masuda K, Asanuma T, Nakatani S. The effect of chronic renal failure on cardiac function: an experimental study with a rat model. J Echocardiogr. 2016;14(4):156–62. (PMID: 2729976010.1007/s12574-016-0300-x)
Inagaki T, Pearson JT, Tsuchimochi H, Schwenke DO, Saito S, Higuchi T, et al. Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography. Am J Physiol Heart Circ Physiol. 2021;320(3):H1021–36. (PMID: 3348169610.1152/ajpheart.00327.2020)
Saito S, Tanoue M, Masuda K, Mori Y, Nakatani S, Yoshioka Y, Murase K. Longitudinal observations of progressive cardiac dysfunction in a cardiomyopathic animal model by self-gated cine imaging based on 11.7-T magnetic resonance imaging. Sci Rep. 2017;7(1):9106. (PMID: 28831129556726210.1038/s41598-017-09755-4)
Sawada K, Fukunishi K, Kashima M, Imai N, Saito S, Aoki I, Fukui Y. Regional difference in sulcal infolding progression correlated with cerebral cortical expansion in cynomolgus monkey fetuses. Congenit Anom (Kyoto). 2017;57(4):114–7. (PMID: 2810901910.1111/cga.12209)
Saito S, Mori Y, Yoshioka Y, Murase K. High-resolution ex vivo imaging in mouse spinal cord using micro-CT with 11.7T-MRI and myelin staining validation. Neurosci Res. 2012;73(4):337–40. (PMID: 2260986710.1016/j.neures.2012.05.004)
Wu D, Richards LJ, Zhao Z, Cao Z, Luo W, Shao W, et al. A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A. 2022. https://doi.org/10.1073/pnas.2111869119 . (PMID: 10.1073/pnas.2111869119365770709910619)
Carli S, Chaabane L, De Rocco G, Albizzati E, Sormonta I, Calligaro S, et al. A comprehensive longitudinal study of magnetic resonance imaging identifies novel features of the Mecp2 deficient mouse brain. Neurobiol Dis. 2023;180: 106083. (PMID: 3693153210.1016/j.nbd.2023.106083)
Saito S, Hasegawa S, Sekita A, Bakalova R, Furukawa T, Murase K, et al. Manganese-enhanced MRI reveals early-phase radiation-induced cell alterations in vivo. Cancer Res. 2013;73(11):3216–24. (PMID: 2369555310.1158/0008-5472.CAN-12-3837)
Onishi R, Sawaya R, Tsuji K, Arihara N, Ohki A, Ueda J, et al. Evaluation of temozolomide treatment for glioblastoma using amide proton transfer imaging and diffusion MRI. Cancers (Basel). 2022;14(8):1907. (PMID: 3545481410.3390/cancers14081907)
Manno FAM, Kumar R, An Z, Khan MS, Su J, Liu J, et al. Structural and functional hippocampal correlations in environmental enrichment during the adolescent to adulthood transition in mice. Front Syst Neurosci. 2021;15: 807297. (PMID: 3524201510.3389/fnsys.2021.807297)
Sawada K, Saito S, Horiuchi-Hirose M, Murase K. Enhanced heat shock protein 25 immunoreactivity in cranial nerve motoneurons and their related fiber tracts in rats prenatally-exposed to X-irradiation. Congenit Anom (Kyoto). 2014;54(2):87–93. (PMID: 2475055410.1111/cga.12028)
Sawada K, Saito S, Horiuchi-Hirose M, Mori Y, Yoshioka Y, Murase K. Dose-related cerebellar abnormality in rats with prenatal exposure to X-irradiation by magnetic resonance imaging volumetric analysis. Congenit Anom (Kyoto). 2013;53(3):127–30. (PMID: 2399826610.1111/cga.12016)
Arihara N, Saito S, Sawaya R, Onishi R, Tsuji K, Ohki A, et al. Evaluation of liver T(1rho) and T(2) values in acute liver inflammation models using 7T-MRI. Magn Reson Imaging. 2022;88:20–4. (PMID: 3509102510.1016/j.mri.2022.01.010)
Hakui H, Kioka H, Miyashita Y, Nishimura S, Matsuoka K, Kato H, et al. Loss-of-function mutations in the co-chaperone protein BAG5 cause dilated cardiomyopathy requiring heart transplantation. Sci Transl Med. 2022;14(628):eabf3274. (PMID: 3504478710.1126/scitranslmed.abf3274)
Kuribayashi S, Saito S, Sawaya R, Takahashi Y, Kioka H, Takezawa K, et al. Creatine chemical exchange saturation transfer (Cr-CEST) imaging can evaluate cisplatin-induced testicular damage. Magn Reson Med Sci. 2022. https://doi.org/10.2463/mrms.mp.2021-0125 . (PMID: 10.2463/mrms.mp.2021-01253554550610449556)
Saito S, Arihara N, Sawaya R, Morimoto-Ishikawa D, Ueda J. Metabolites alterations and liver injury in hepatic encephalopathy models evaluated by use of 7T-MRI. Metabolites. 2022;12(5):396. (PMID: 35629900914796410.3390/metabo12050396)
Sawaya R, Kuribayashi S, Ueda J, Saito S. Evaluating the cisplatin dose dependence of testicular dysfunction using creatine chemical exchange saturation transfer imaging. Diagnostics (Basel). 2022;12(5):1046. (PMID: 3562620210.3390/diagnostics12051046)
Grandjean J, Desrosiers-Gregoire G, Anckaerts C, Angeles-Valdez D, Ayad F, Barriere DA, et al. A consensus protocol for functional connectivity analysis in the rat brain. Nat Neurosci. 2023;26(4):673–81. (PMID: 369735111049318910.1038/s41593-023-01286-8)
Onishi R, Ueda J, Ide S, Koseki M, Sakata Y, Saito S. Application of magnetic resonance strain analysis using feature tracking in a myocardial infarction model. Tomography. 2023;9(2):871–82. (PMID: 371041421014192310.3390/tomography9020071)
Ueda J, Saito S. Evaluation of cardiac function in young Mdx mice using MRI with feature tracking and self-gated magnetic resonance cine imaging. Diagnostics (Basel). 2023;13(8):1472. (PMID: 3718957310.3390/diagnostics13081472)
Gao S, Miura Y, Sumiyoshi A, Ohno S, Ogata K, Nomoto T, et al. Self-folding macromolecular drug carrier for cancer imaging and therapy. Adv Sci (Weinh). 2023. https://doi.org/10.1002/advs.202304171 . (PMID: 10.1002/advs.2023041713816122610767459)
Kurahashi T, Nishime C, Nishinaka E, Komaki Y, Seki F, Urano K, et al. Transplantation of chemical compound-induced cells from human fibroblasts improves locomotor recovery in a spinal cord injury rat model. Int J Mol Sci. 2023;24(18):13853. (PMID: 377621561053073710.3390/ijms241813853)
Mahara A, Shima K, Soni R, Onishi R, Hirano Y, Saito S, Yamaoka T. In vivo MR imaging for tumor-associated initial neovascularization by supramolecular contrast agents. Colloids Surf B Biointerfaces. 2023;230: 113525. (PMID: 3763428710.1016/j.colsurfb.2023.113525)
Matsubayashi K, Shinozaki M, Hata J, Komaki Y, Nagoshi N, Tsuji O, et al. A shift of brain network hub after spinal cord injury. Front Mol Neurosci. 2023;16:1245902. (PMID: 379159731061686410.3389/fnmol.2023.1245902)
Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, et al. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat Biomed Eng. 2023;7(11):1350–73. (PMID: 374149761065149010.1038/s41551-023-01061-x)
Nakano T, Natsuyama T, Tsuji N, Katayama N, Ueda J, Saito S. Longitudinal evaluation using preclinical 7T-magnetic resonance imaging/spectroscopy on prenatally dose-dependent alcohol-exposed rats. Metabolites. 2023;13(4):527. (PMID: 371101851014228710.3390/metabo13040527)
Okuno T, Hata J, Haga Y, Muta K, Tsukada H, Nakae K, et al. Group surrogate data generating models and similarity quantification of multivariate time-series: a resting-State fMRI STUDY. Neuroimage. 2023;279: 120329. (PMID: 3759147710.1016/j.neuroimage.2023.120329)
Skibbe H, Rachmadi MF, Nakae K, Gutierrez CE, Hata J, Tsukada H, et al. The brain/MINDS marmoset connectivity resource: an open-access platform for cellular-level tracing and tractography in the primate brain. PLoS Biol. 2023;21(6): e3002158. (PMID: 373848091033797610.1371/journal.pbio.3002158)
Sumiyoshi A, Shibata S, Lazarova D, Zhelev Z, Aoki I, Bakalova R. Tolerable treatment of glioblastoma with redox-cycling “mitocans”: a comparative study in vivo. Redox Rep. 2023;28(1):2220531. (PMID: 375813291043500710.1080/13510002.2023.2220531)
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: application to brain tumors. Magn Reson Med. 2022;88(2):546–74. (PMID: 35452155932189110.1002/mrm.29241)
Saito S, Sawada K, Hirose M, Mori Y, Yoshioka Y, Murase K. Diffusion tensor imaging of brain abnormalities induced by prenatal exposure to radiation in rodents. PLoS ONE. 2014;9(9): e107368. (PMID: 25202992415934210.1371/journal.pone.0107368)
Takahashi Y, Kioka H, Shintani Y, Ohki A, Takashima S, Sakata Y, et al. Detection of increased intracerebral lactate in a mouse model of Leigh syndrome using proton MR spectroscopy. Magn Reson Imaging. 2019;58:38–43. (PMID: 3066898310.1016/j.mri.2019.01.010)
Saito S, Sawada K, Mori Y, Yoshioka Y, Murase K. Brain and arterial abnormalities following prenatal X-ray irradiation in mice assessed by magnetic resonance imaging and angiography. Congenit Anom (Kyoto). 2015;55(2):103–6. (PMID: 2553452310.1111/cga.12101)
Ohki A, Saito S, Hirayama E, Takahashi Y, Ogawa Y, Tsuji M, et al. Comparison of chemical exchange saturation transfer imaging with diffusion-weighted imaging and magnetic resonance spectroscopy in a rat model of hypoxic-ischemic encephalopathy. Magn Reson Med Sci. 2020;19(4):359–65. (PMID: 32009063780914810.2463/mrms.mp.2019-0128)
Schweser F, Preda M, Zivadinov R. Susceptibility weighted MRI in Rodents at 9.4 T. Methods Mol Biol. 2018;1718:205–34. (PMID: 2934101110.1007/978-1-4939-7531-0_13)
Saito S, Mori Y, Tanki N, Yoshioka Y, Murase K. Factors affecting the chemical exchange saturation transfer of Creatine as assessed by 11.7 T MRI. Radiol Phys Technol. 2015;8(1):146–52. (PMID: 2547723810.1007/s12194-014-0303-0)
Hikishima K, Yagi K, Numano T, Homma K, Nitta N, Nakatani T, Hyodo K. Volumetric q-space imaging by 3D diffusion-weighted MRI. Magn Reson Imaging. 2008;26(4):437–45. (PMID: 1806892910.1016/j.mri.2007.09.001)
Viale A, Reineri F, Santelia D, Cerutti E, Ellena S, Gobetto R, Aime S. Hyperpolarized agents for advanced MRI investigations. Q J Nucl Med Mol Imaging. 2009;53(6):604–17. (PMID: 20016452)
Morikawa S, Kido C, Inubushi T. Observation of rat hind limb skeletal muscle during arterial occlusion and reperfusion by 31P MRS and 1H MRI. Magn Reson Imaging. 1991;9(3):269–74. (PMID: 188124410.1016/0730-725X(91)90411-E)
Yamamoto A, Sato H, Enmi J, Ishida K, Ose T, Kimura A, et al. Use of a clinical MRI scanner for preclinical research on rats. Radiol Phys Technol. 2009;2(1):13–21. (PMID: 2082112410.1007/s12194-008-0038-x)
Nagata M, Kagawa T, Koutou D, Matsushita T, Yamazaki Y, Murase K. Measurement of manganese content in various organs in rats with or without glucose stimulation. Radiol Phys Technol. 2011;4(1):7–12. (PMID: 2082096510.1007/s12194-010-0098-6)
Saito S, Takahashi Y, Ohki A, Shintani Y, Higuchi T. Early detection of elevated lactate levels in a mitochondrial disease model using chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) at 7T-MRI. Radiol Phys Technol. 2019;12(1):46–54. (PMID: 3046768310.1007/s12194-018-0490-1)
Saito S, Tanoue M, Ohki A, Takahashi Y. 19 application of chemical exchange saturation transfer imaging using ultra-high filed MRI. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2019;75(10):1194–9. (PMID: 3163111410.6009/jjrt.2019_JSRT_75.10.1194)
McCarthy WJ, Vogelzang RL, Nemcek AA Jr, Joseph A, Pearce WH, Flinn WR, Yao JS. Excimer laser-assisted femoral angioplasty: early results. J Vasc Surg. 1991;13(5):607–14. (PMID: 182750410.1016/0741-5214(91)90343-S)
Tanoue M, Saito S, Takahashi Y, Araki R, Hashido T, Kioka H, et al. Amide proton transfer imaging of glioblastoma, neuroblastoma, and breast cancer cells on a 11.7T magnetic resonance imaging system. Magn Reson Imaging. 2019;62:181–90. (PMID: 3130222210.1016/j.mri.2019.07.005)
Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–54. (PMID: 24449944418160010.1016/S0140-6736(13)61953-4)
Saito S, Masuda K, Mori Y, Nakatani S, Yoshioka Y, Murase K. Mapping of left ventricle wall thickness in mice using 11.7-T magnetic resonance imaging. Magn Reson Imaging. 2017;36:128–34. (PMID: 2798990510.1016/j.mri.2016.10.030)
Murase K, Assanai P, Takata H, Matsumoto N, Saito S, Nishiura M. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model. Magn Reson Imaging. 2015;33(5):600–10. (PMID: 2568351410.1016/j.mri.2015.02.007)
Murase K, Assanai P, Takata H, Saito S, Nishiura M. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA. Magn Reson Imaging. 2013;31(10):1744–51. (PMID: 2409468610.1016/j.mri.2013.08.005)
Saito S, Obata A, Kashiwagi Y, Abe K, Murase K. Dynamic contrast-enhanced MRI of the liver in Mrp2-deficient rats using the hepatobiliary contrast agent Gd-EOB-DTPA. Invest Radiol. 2013;48(7):548–53. (PMID: 2344277410.1097/RLI.0b013e3182856a06)
Moriyama Y, Saito S, Kobayashi S, Ogihara R, Koto D, Kitamura A, et al. Evaluation of concanavalin A-induced acute liver injury in rats using an empirical mathematical model and dynamic contrast-enhanced MR imaging with Gd-EOB-DTPA. Magn Reson Med Sci. 2012;11(1):53–60. (PMID: 2245038710.2463/mrms.11.53)
Saito S, Moriyama Y, Kobayashi S, Ogihara R, Koto D, Kitamura A, et al. Assessment of liver function in thioacetamide-induced rat acute liver injury using an empirical mathematical model and dynamic contrast-enhanced MRI with Gd-EOB-DTPA. J Magn Reson Imaging. 2012;36(6):1483–9. (PMID: 2271143910.1002/jmri.23726)
معلومات مُعتمدة: JPMXS0450400022 Ministry of Education, Culture, Sports, Science and Technology; JPMXS0450400023 Ministry of Education, Culture, Sports, Science and Technology; 2019 Japanese Society of Radiological Technology; 2020 Japanese Society of Radiological Technology; 2021 Japanese Society of Radiological Technology
فهرسة مساهمة: Keywords: Magnetic resonance imaging; Permanent magnet animal MRI equipment; Preclinical MRI; Small-animal high-field MRI equipment
تواريخ الأحداث: Date Created: 20240213 Date Completed: 20240301 Latest Revision: 20240316
رمز التحديث: 20240316
مُعرف محوري في PubMed: PMC10901953
DOI: 10.1007/s12194-024-00785-y
PMID: 38351261
قاعدة البيانات: MEDLINE
الوصف
تدمد:1865-0341
DOI:10.1007/s12194-024-00785-y