دورية أكاديمية

CdsA, a CDP-diacylglycerol synthase involved in phospholipid and glycolipid MPIase biosynthesis, possesses multiple initiation codons.

التفاصيل البيبلوغرافية
العنوان: CdsA, a CDP-diacylglycerol synthase involved in phospholipid and glycolipid MPIase biosynthesis, possesses multiple initiation codons.
المؤلفون: Hikage R; Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan., Sekiya Y; Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan., Sawasato K; Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan., Nishiyama KI; Department of Applied Biological Chemistry, Faculty of Agriculture, Iwate University, Morioka, Japan.
المصدر: Genes to cells : devoted to molecular & cellular mechanisms [Genes Cells] 2024 Apr; Vol. 29 (4), pp. 347-355. Date of Electronic Publication: 2024 Feb 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Ltd Country of Publication: England NLM ID: 9607379 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2443 (Electronic) Linking ISSN: 13569597 NLM ISO Abbreviation: Genes Cells Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Science Ltd., 1996-
مواضيع طبية MeSH: Diacylglycerol Cholinephosphotransferase*/metabolism , Phospholipids* , Glycolipids*, Codon, Initiator/genetics ; Codon, Terminator/genetics ; Protein Biosynthesis
مستخلص: CdsA is a CDP-diacylglycerol synthase essential for phospholipid and glycolipid MPIase biosynthesis, and therefore for growth. The initiation codon of CdsA has been assigned as "TTG," while methionine at the 37th codon was reported to be an initiation codon in the original report. Since a vector containing the open reading frame starting with "TTG" under a controllable promoter complemented the cdsA knockout, "TTG" could function as an initiation codon. However, no evidence supporting that this "TTG" is the sole initiation codon has been reported. We determined the initiation codon by examining the ability of mutants around the N-terminal region to complement cdsA mutants. Even if the "TTG" was substituted with a stop codon, the clear complementation was observed. Moreover, the clones with multiple mutations of stop codons complemented the cdsA mutant up to the 37th codon, indicating that cdsA possesses multiple codons that can function as initiation codons. We constructed an experimental system in which the chromosomal expression of cdsA can be analyzed. By means of this system, we found that the cdsA mutant with substitution of "TTG" with a stop codon is fully functional. Thus, we concluded that CdsA contains multiple initiation codons.
(© 2024 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.)
References: Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099.
Blunsom, N. J., & Cockcroft, S. (2020). CDP‐diacylglycerol synthases (CDS): Gateway to phosphatidylinositol and cardiolipin synthesis. Frontiers in Cell and Development Biology, 8, 63. https://doi.org/10.3389/fcell.2020.00063.
Chang, A. C., & Cohen, S. N. (1978). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. Journal of Bacteriology, 134(3), 1141–1156. https://doi.org/10.1128/jb.134.3.1141-1156.1978.
Ganong, B. R., & Raetz, C. R. (1982). Massive accumulation of phosphatidic acid in conditionally lethal CDP‐diglyceride synthetase mutants and cytidine auxotrophs of Escherichia coli. The Journal of Biological Chemistry, 257(1), 389–394. https://doi.org/10.1016/S0021-9258(19)68376-6.
Hecht, A., Glasgow, J., Jaschke, P. R., Bawazer, L. A., Munson, M. S., Cochran, J. R., Endy, D., & Salit, M. (2017). Measurements of translation initiation from all 64 codons in E. coli. Nucleic Acids Research, 45(7), 3615–3626. https://doi.org/10.1093/nar/gkx070.
Icho, T., Sparrow, C. P., & Raetz, C. R. (1985). Molecular cloning and sequencing of the gene for CDP‐diglyceride synthetase of Escherichia coli. The Journal of Biological Chemistry, 260(22), 12078–12083. https://doi.org/10.1016/S0021-9258(17)38988-3.
Liu, J. D., & Parkinson, J. S. (1989). Genetics and sequence analysis of the pcnB locus, an Escherichia coli gene involved in plasmid copy number control. Journal of Bacteriology, 171(3), 1254–1261. https://doi.org/10.1128/jb.171.3.1254-1261.1989.
Liu, X., Yin, Y., Wu, J., & Liu, Z. (2014). Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Nature Communications, 5, 4244. https://doi.org/10.1038/ncomms5244.
Lopilato, J., Bortner, S., & Beckwith, J. (1986). Mutations in a new chromosomal gene of Escherichia coli K‐12, pcnB, reduce plasmid copy number of pBR322 and its derivatives. Molecular & General Genetics, 205(2), 285–290. https://doi.org/10.1007/BF00430440.
Luirink, J., von Heijne, G., Houben, E., & de Gier, J. W. (2005). Biogenesis of inner membrane proteins in Escherichia coli. Annual Review of Microbiology, 59(6), 329–355. https://doi.org/10.1016/j.bbabio.2011.12.006.
Nishiyama, K., Maeda, M., Abe, M., Kanamori, T., Shimamoto, K., Kusumoto, S., Ueda, T., & Tokuda, H. (2010). A novel complete reconstitution system for membrane integration of the simplest membrane protein. Biochemical and Biophysical Research Communications, 394(3), 733–736. https://doi.org/10.1016/j.bbrc.2010.03.061.
Nishiyama, K., Maeda, M., Yanagisawa, K., Nagase, R., Komura, H., Iwashita, T., Yamagaki, T., Kusumoto, S., Tokuda, H., & Shimamoto, K. (2012). MPIase is a glycolipozyme essential for membrane protein integration. Nature Communications, 3, 1260. https://doi.org/10.1038/ncomms2267.
Nishiyama, K., Suzuki, T., & Tokuda, H. (1996). Inversion of the membrane topology of SecG coupled with SecA‐dependent preprotein translocation. Cell, 85(1), 71–81. https://doi.org/10.1016/S0092-8674(00)81083-1.
Nozaki, S., & Niki, H. (2019). Exonuclease III (XthA) enforces in vivo DNA cloning of Escherichia coli to create cohesive ends. Journal of Bacteriology, 201(5), e00660. https://doi.org/10.1128/JB.00660-18.
O'Donnell, S. M., & Janssen, G. R. (2001). The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. Journal of Bacteriology, 183(4), 1277–1283. https://doi.org/10.1128/JB.183.4.1277-1283.2001.
Raetz, C. R., & Dowhan, W. (1990). Biosynthesis and function of phospholipids in Escherichia coli. The Journal of Biological Chemistry, 265(3), 1235–1238. https://doi.org/10.1016/S0021-9258(19)40001-X.
Reddy, P., Peterkofsky, A., & McKenney, K. (1985). Translational efficiency of the Escherichia coli adenylate cyclase gene: Mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proceedings of the National Academy of Sciences of the United States of America, 82(17), 5656–5660. https://doi.org/10.1073/pnas.82.17.5656.
Sasaki, M., Nishikawa, H., Suzuki, S., Moser, M., Huber, M., Sawasato, K., Matsubayashi, H. T., Kumazaki, K., Tsukazaki, T., Kuruma, Y., Nureki, O., Ueda, T., & Nishiyama, K. (2019). The bacterial protein YidC accelerates MPIase‐dependent integration of membrane proteins. The Journal of Biological Chemistry, 294(49), 18898–18908. https://doi.org/10.1074/jbc.RA119.011248.
Sato, R., Sawasato, K., & Nishiyama, K. (2019). YnbB is a CdsA paralogue dedicated to biosynthesis of glycolipid MPIase involved in membrane protein integration. Biochemical and Biophysical Research Communications, 510(4), 636–642. https://doi.org/10.1016/j.bbrc.2019.01.145.
Sawasato, K., Sato, R., Nishikawa, H., Iimura, N., Kamemoto, Y., Fujikawa, K., Yamaguchi, T., Kuruma, Y., Tamura, Y., Endo, T., Ueda, T., Shimamoto, K., & Nishiyama, K. (2019). CdsA is involved in biosynthesis of glycolipid MPIase essential for membrane protein integration in vivo. Scientific Reports, 9(1), 1372. https://doi.org/10.1038/s41598-018-37809-8.
Sawasato, K., Sekiya, Y., & Nishiyama, K. (2019). Two‐step induction of cdsA promoters leads to upregulation of the glycolipid MPIase at cold temperature. FEBS Letters, 593(14), 1711–1723. https://doi.org/10.1002/1873-3468.13460.
Sawasato, K., Suzuki, S., & Nishiyama, K. (2019). Increased expression of the bacterial glycolipid MPIase is required for efficient protein translocation across membranes in cold conditions. The Journal of Biological Chemistry, 294(21), 8403–8411. https://doi.org/10.1074/jbc.RA119.008457.
Sekiya, Y., Sawasato, K., & Nishiyama, K. (2021). Expression of Cds4/5 of Arabidopsis chloroplasts in E. coli reveals the membrane topology of the C‐terminal region of CDP‐diacylglycerol synthases. Genes to Cells, 26(9), 727–738. https://doi.org/10.1111/gtc.12880.
Shibui, T., Uchida, M., & Teranishi, Y. (1988). A new hybrid promoter and its expression vector in Escherichia coli. Agricultural and Biological Chemistry, 52(4), 983–988. https://doi.org/10.1271/bbb1961.52.983.
Shimizu, H., Nishiyama, K., & Tokuda, H. (1997). Expression of gpsA encoding biosynthetic sn‐glycerol 3‐phosphate dehydrogenase suppresses both the LB− phenotype of a secB null mutant and the cold‐sensitive phenotype of a secG null mutant. Molecular Microbiology, 26(5), 1013–1021. https://doi.org/10.1046/j.1365-2958.1997.6392003.x.
Shine, J., & Dalgarno, L. (1975). Determinant of cistron specificity in bacterial ribosomes. Nature, 254(5495), 34–38. https://doi.org/10.1038/254034a0.
Sparrow, C. P., & Raetz, C. R. (1985). Purification and properties of the membrane‐bound CDP‐diglyceride synthetase from Escherichia coli. The Journal of Biological Chemistry, 260(22), 12084–12091. https://doi.org/10.1016/S0021-9258(17)38989-5.
Virkki, M. T., Peters, C., Nilsson, D., Sorensen, T., Cristobal, S., Wallner, B., & Elofsson, A. (2014). The positive inside rule is stronger when followed by a transmembrane helix. Journal of Molecular Biology, 426(16), 2982–2991. https://doi.org/10.1016/j.jmb.2014.06.002.
معلومات مُعتمدة: 22H02567 Japan Society for the Promotion of Science; 22H05392 Japan Society for the Promotion of Science; 22K19262 Japan Society for the Promotion of Science; 23H04536 Japan Society for the Promotion of Science
فهرسة مساهمة: Keywords: CDP‐diacylglycerol synthase; CdsA; MPIase; initiation codon; phospholipids
المشرفين على المادة: EC 2.7.8.2 (Diacylglycerol Cholinephosphotransferase)
0 (Phospholipids)
0 (glycolipid MPIase)
0 (Codon, Initiator)
0 (Codon, Terminator)
0 (Glycolipids)
تواريخ الأحداث: Date Created: 20240214 Date Completed: 20240404 Latest Revision: 20240404
رمز التحديث: 20240404
DOI: 10.1111/gtc.13104
PMID: 38351722
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2443
DOI:10.1111/gtc.13104