دورية أكاديمية

A high black-hole-to-host mass ratio in a lensed AGN in the early Universe.

التفاصيل البيبلوغرافية
العنوان: A high black-hole-to-host mass ratio in a lensed AGN in the early Universe.
المؤلفون: Furtak LJ; Physics Department, Ben-Gurion University of the Negev, Be'er-Sheva, Israel. furtak@post.bgu.ac.il., Labbé I; Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia., Zitrin A; Physics Department, Ben-Gurion University of the Negev, Be'er-Sheva, Israel., Greene JE; Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA., Dayal P; Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands., Chemerynska I; Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, Paris, France., Kokorev V; Kapteyn Astronomical Institute, University of Groningen, Groningen, The Netherlands., Miller TB; Department of Astronomy, Yale University, New Haven, CT, USA.; Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA., Goulding AD; Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA., de Graaff A; Max-Planck-Institut für Astronomie, Heidelberg, Germany., Bezanson R; Department of Physics and Astronomy and PITT PACC, University of Pittsburgh, Pittsburgh, PA, USA., Brammer GB; Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark., Cutler SE; Department of Astronomy, University of Massachusetts, Amherst, MA, USA., Leja J; Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA, USA.; Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA.; Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA, USA., Pan R; Department of Physics and Astronomy, Tufts University, Medford, MA, USA., Price SH; Department of Physics and Astronomy and PITT PACC, University of Pittsburgh, Pittsburgh, PA, USA., Wang B; Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA, USA.; Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA.; Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA, USA., Weaver JR; Department of Astronomy, University of Massachusetts, Amherst, MA, USA., Whitaker KE; Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.; Department of Astronomy, University of Massachusetts, Amherst, MA, USA., Atek H; Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, Paris, France., Bogdán Á; Center for Astrophysics ∣ Harvard & Smithsonian, Cambridge, MA, USA., Charlot S; Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, Paris, France., Curtis-Lake E; Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK., van Dokkum P; Department of Astronomy, Yale University, New Haven, CT, USA., Endsley R; Department of Astronomy, The University of Texas at Austin, Austin, TX, USA., Feldmann R; Institute for Computational Science, University of Zurich, Zurich, Switzerland., Fudamoto Y; Waseda Research Institute for Science and Engineering, Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.; National Astronomical Observatory of Japan, Mitaka, Tokyo, Japan., Fujimoto S; Department of Astronomy, The University of Texas at Austin, Austin, TX, USA., Glazebrook K; Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne, Victoria, Australia., Juneau S; NSF's National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ, USA., Marchesini D; Department of Physics and Astronomy, Tufts University, Medford, MA, USA., Maseda MV; Department of Astronomy, University of Wisconsin-Madison, Madison, WI, USA., Nelson E; Department for Astrophysical and Planetary Science, University of Colorado, Boulder, CO, USA., Oesch PA; Cosmic Dawn Center (DAWN), Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.; Department of Astronomy, University of Geneva, Versoix, Switzerland., Plat A; Steward Observatory, University of Arizona, Tucson, AZ, USA., Setton DJ; Department of Physics and Astronomy and PITT PACC, University of Pittsburgh, Pittsburgh, PA, USA., Stark DP; Steward Observatory, University of Arizona, Tucson, AZ, USA., Williams CC; NSF's National Optical-Infrared Astronomy Research Laboratory, Tucson, AZ, USA.; Steward Observatory, University of Arizona, Tucson, AZ, USA.
المصدر: Nature [Nature] 2024 Apr; Vol. 628 (8006), pp. 57-61. Date of Electronic Publication: 2024 Feb 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Lens, Crystalline*, Animals ; Dorsal Raphe Nucleus ; Service Animals
مستخلص: Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth 1-3 . One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref.  4 ). Here we present deep JWST/NIRSpec observations of this object, Abell2744-QSO1. The spectroscopy confirms that the three images are of the same object, and that it is a highly reddened (A V  ≃ 3) broad emission line active galactic nucleus at a redshift of z spec  = 7.0451 ± 0.0005. From the width of Hβ (full width at half-maximum = 2,800 ± 250 km s -1 ), we derive a black hole mass of M BH = 4 - 1 + 2 × 1 0 7 M ⊙ . We infer a very high ratio of black-hole-to-galaxy mass of at least 3%, an order of magnitude more than that seen in local galaxies 5 and possibly as high as 100%. The lack of strong metal lines in the spectrum together with the high bolometric luminosity (L bol  = (1.1 ± 0.3) × 10 45  erg s -1 ) indicate that we are seeing the black hole in a phase of rapid growth, accreting at 30% of the Eddington limit. The rapid growth and high black-hole-to-galaxy mass ratio of Abell2744-QSO1 suggest that it may represent the missing link between black hole seeds 6 and one of the first luminous quasars 7 .
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z > 5 with CEERS. Astrophys. J. Lett. 954, L4 (2023).
Matthee, J. et al. Little Red Dots: an abundant population of faint AGN at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Preprint at arxiv.org/abs/2306.05448 (2023).
Labbe, I. et al. UNCOVER: candidate red active galactic nuclei at 3 < z < 7 with JWST and ALMA. Preprint at arxiv.org/abs/2306.07320 (2023).
Furtak, L. J. et al. JWST UNCOVER: extremely Red and Compact Object at z phot  ≃ 7.6 triply imaged by A2744. Astrophys. J. 952, 142 (2023).
Bennert, V. N., Auger, M. W., Treu, T., Woo, J.-H. & Malkan, M. A. The relation between black hole mass and host spheroid stellar mass out to z ~ 2. Astrophys. J. 742, 107 (2011).
Volonteri, M., Habouzit, M. & Colpi, M. The origins of massive black holes. Nat. Rev. Phys. 3, 732–743 (2021).
Fan, X., Bañados, E. & Simcoe, R. A. Quasars and the Intergalactic Medium at Cosmic Dawn. Annu. Rev. Astron. Astrophys. 61, 373–426 (2023).
Rieke, M. J. et al. Performance of NIRCam on JWST in Flight. Publ. Astron. Soc. Pac. 135, 028001 (2023).
Bezanson, R. et al. The JWST UNCOVER Treasury survey: Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization. Preprint at arxiv.org/abs/2212.04026 (2022).
Lotz, J. M. et al. The frontier fields: survey design and initial results. Astrophys. J. Suppl. Ser. 837, 97 (2017).
Abell, G. O., Corwin, H. G.Jr & Olowin, R. P. A catalog of rich clusters of galaxies. Astrophys. J. Suppl, Ser. 70, 1–138 (1989).
Furtak, L. J. et al. UNCOVERing the extended strong lensing structures of Abell 2744 with the deepest JWST imaging. Mon. Not. R. Astron. Soc. 523, 4568–4582 (2023).
Atek, H. et al. Probing the z > 6 Universe with the first Hubble frontier fields cluster A2744. Astrophys. J. 786, 60 (2014).
Jakobsen, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 661, A80 (2022).
Hao, L. et al. Active galactic nuclei in the Sloan Digital Sky Survey. II. Emission-line luminosity function. Astron. J. 129, 1795–1808 (2005).
Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the small Magellanic cloud, large Magellanic cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).
Fujimoto, S. et al. DUALZ: deep UNCOVER-ALMA legacy high-Z survey. Preprint at arxiv.org/abs/2309.07834 (2023).
Greene, J. E. & Ho, L. C. Estimating black hole masses in active galaxies using the Hα emission line. Astrophys. J. 630, 122–129 (2005).
Sérsic, J. L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc. Argent. Astron. Plata Argent. 6, 41–43 (1963).
Vanzella, E. et al. JWST/NIRCam probes young star clusters in the reionization era sunrise arc. Astrophys. J. 945, 53 (2023).
Baggen, J. F. W. et al. Sizes and mass profiles of candidate massive galaxies discovered by JWST at 7 < z < 9: evidence for very early formation of the central ∼100 pc of present-day ellipticals. Astrophys. J. Lett. 955, L12 (2023).
Izumi, T. et al. Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). XIII. Large-scale feedback and star formation in a low-luminosity quasar at z = 7.07 on the local black hole to host mass relation. Astrophys. J. 914, 36 (2021).
Vanden Berk, D. E. et al. Composite Quasar Spectra from the Sloan Digital Sky Survey. Astron. J. 122, 549–564 (2001).
Harikane, Y. et al. A JWST/NIRSpec first census of broad-line AGNs at z = 4–7: detection of 10 faint AGNs with M BH  ∼ 10 6 –10 8 M and their host galaxy properties. Astrophys. J. 959, 39 (2023).
Veilleux, S., Meléndez, M., Tripp, T. M., Hamann, F. & Rupke, D. S. N. The complete ultraviolet spectrum of the archetypal “wind-dominated” quasar Mrk 231: absorption and emission from a high-speed dusty nuclear outflow. Astrophys. J. 825, 42 (2016).
Banerji, M., Alaghband-Zadeh, S., Hewett, P. C. & McMahon, R. G. Heavily reddened type 1 quasars at z > 2 – I. Evidence for significant obscured black hole growth at the highest quasar luminosities. Mon. Not. R. Astron. Soc. 447, 3368–3389 (2015).
Leighly, K. M., Halpern, J. P., Jenkins, E. B. & Casebeer, D. The intrinsically X-ray-weak quasar PHL 1811. II. Optical and UV spectra and analysis. Astrophys. J. Suppl. Ser. 173, 1–36 (2007).
Abramowicz, M. A., Czerny, B., Lasota, J. P. & Szuszkiewicz, E. Slim accretion disks. Astrophys. J. 332, 646 (1988).
Fujimoto, S. et al. A dusty compact object bridging galaxies and quasars at cosmic dawn. Nature 604, 261–265 (2022). (PMID: 35418632)
Matsuoka, Y. et al. Quasar Luminosity Function at z = 7. Astrophys. J. Lett. 949, L42 (2023).
Larson, R. L. et al. A CEERS discovery of an accreting supermassive black hole 570 Myr after the Big Bang: identifying a progenitor of massive z > 6 quasars. Astrophys. J. Lett. 953, L29 (2023).
Maiolino, R. et al. A small and vigorous black hole in the early Universe. Preprint at arxiv.org/abs/2305.12492 (2023).
Maiolino, R. et al. JADES. The diverse population of infant Black Holes at 4 < z < 11: merging, tiny, poor, but mighty. Preprint at arxiv.org/abs/2308.01230 (2023).
Goulding, A. D. et al. UNCOVER: the growth of the first massive black holes from JWST/NIRSpec – spectroscopic redshift confirmation of an X-ray luminous AGN at z = 10.1. Astrophys. J. Lett. 955, L24 (2023).
Greene, J. E. et al. UNCOVER spectroscopy confirms a surprising ubiquity of AGN in red galaxies at z > 5. Preprint at arxiv.org/abs/2309.05714 (2023).
Atek, H., Richard, J., Kneib, J.-P. & Schaerer, D. The extreme faint end of the UV luminosity function at z ~ 6 through gravitational telescopes: a comprehensive assessment of strong lensing uncertainties. Mon. Not. R. Astron. Soc. 479, 5184–5195 (2018).
Dayal, P. et al. The hierarchical assembly of galaxies and black holes in the first billion years: predictions for the era of gravitational wave astronomy. Mon. Not. R. Astron. Soc. 486, 2336–2350 (2019).
Piana, O., Dayal, P., Volonteri, M. & Choudhury, T. R. The mass assembly of high-redshift black holes. Mon. Not. R. Astron. Soc. 500, 2146–2158 (2021).
Habouzit, M. et al. Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of JWST. Mon. Not. R. Astron. Soc. 511, 3751–3767 (2022).
De Laurentis, M. & Salucci, P. The Accurate Mass Distribution of M87, the Giant Galaxy with Imaged Shadow of Its Supermassive Black Hole, as a Portal to New Physics. Astrophys. J. 929, 17 (2022).
Kroupa, P., Subr, L., Jerabkova, T. & Wang, L. Very high redshift quasars and the rapid emergence of supermassive black holes. Mon. Not. R. Astron. Soc. 498, 5652–5683 (2020).
Yang, J. et al. Probing early supermassive black hole growth and quasar evolution with near-infrared spectroscopy of 37 reionization-era quasars at 6.3 ≤ z ≤ 7.64. Astrophys. J. 923, 262 (2021).
Reines, A. E. & Volonteri, M. Relations between Central Black Hole Mass and Total Galaxy Stellar Mass in the Local Universe. Astrophys. J. 813, 82 (2015).
Suh, H. et al. No significant evolution of relations between black hole mass and galaxy total stellar mass up to z ~ 2.5. Astrophys. J. 889, 32 (2020).
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).
Gardner, J. P. et al. The James Webb Space Telescope Mission. Publ. Astron. Soc. Pac. 135, 068001 (2023).
McElwain, M. W. et al. The James Webb Space Telescope Mission: optical telescope element design, development, and performance. Publ. Astron. Soc. Pac. 135, 058001 (2023).
Böker, T. et al. In-orbit performance of the near-infrared spectrograph NIRSpec on the James Webb Space Telescope. Publ. Astron. Soc. Pac. 135, 038001 (2023).
Weaver, J. R. et al. The UNCOVER survey: a first-look HST + JWST catalog of 60,000 galaxies near A2744 and beyond. Astrophys. J. Suppl. Ser. 270, 7 (2024).
Brammer, G. grizli (1.8.3). Zenodo https://doi.org/10.5281/zenodo.8210732 (2023).
Treu, T. et al. The GLASS-JWST Early Release Science Program. I. Survey design and release plans. Astrophys. J. 935, 110 (2022).
Ferruit, P. et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. II. Multi-object spectroscopy (MOS). Astron. Astrophys. 661, A81 (2022).
Brammer, G. msaexp: NIRSpec analyis tools. Zenodo https://doi.org/10.5281/zenodo.7313329 (2022).
González-López, J. et al. The ALMA Frontier Fields Survey. I. 1.1 mm continuum detections in Abell 2744, MACS J0416.1-2403 and MACS J1149.5+2223. Astron. Astrophys. 597, A41 (2017).
Bogdan, A. et al. Evidence for heavy-seed origin of early supermassive black holes from a z ≈ 10 X-ray quasar. Nat. Astron. 8, 26–133 (2024).
Bergamini, P. et al. The GLASS-JWST Early Release Science Program. III. Strong-lensing model of Abell 2744 and its infalling regions. Astrophys. J. 952, 84 (2023).
Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44 (2015).
Pascale, M. et al. Unscrambling the lensed galaxies in JWST images behind SMACS 0723. Astrophys. J. Lett. 938, L6 (2022).
Elíasdóttir, Á. et al. Where is the matter in the merging cluster Abell 2218? Preprint at arxiv.org/abs/0710.5636 (2007).
Bergamini, P. et al. New high-precision strong lensing modeling of Abell 2744. Preparing for JWST observations. Astron. Astrophys. 670, A60 (2023).
Jaffe, W. A simple model for the distribution of light in spherical galaxies. Mon. Not. R. Astron. Soc. 202, 995–999 (1983).
Keeton, C. R. A catalog of mass models for gravitational lensing. Preprint at arxiv.org/abs/astro-ph/0102341 (2001).
Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).
Earl, N. et al. astropy/specutils v.1.10.0. Zenodo https://doi.org/10.5281/zenodo.7803739 (2023).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
de Graaff, A. et al. Ionised gas kinematics and dynamical masses of z ≳ 6 galaxies from JADES/NIRSpec high-resolution spectroscopy. Preprint at arxiv.org/abs/2308.09742 (2023).
Prevot, M. L., Lequeux, J., Maurice, E., Prevot, L. & Rocca-Volmerange, B. The typical interstellar extinction in the Small Magellanic Cloud. Astron. Astrophys. 132, 389–392 (1984).
Bouchet, P., Lequeux, J., Maurice, E., Prevot, L. & Prevot-Burnichon, M. L. The visible and infrared extinction law and the gas-to-dust ratio in the Small Magellanic Cloud. Astron. Astrophys. 149, 330–336 (1985).
Richards, G. T. et al. Red and reddened quasars in the Sloan Digital Sky Survey. Astron. J. 126, 1131–1147 (2003).
Hopkins, P. F. et al. Dust reddening in Sloan Digital Sky Survey quasars. Astron. J. 128, 1112–1123 (2004).
Capak, P. L. et al. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission. Nature 522, 455–458 (2015). (PMID: 26108853)
Reddy, N. A. et al. The MOSDEF survey: measurements of Balmer decrements and the dust attenuation curve at redshifts z ~ 1.4–2.6. Astrophys. J. 806, 259 (2015).
Reddy, N. A. et al. The HDUV survey: a revised assessment of the relationship between UV slope and dust attenuation for high-redshift galaxies. Astrophys. J. 853, 56 (2018).
Shivaei, I. et al. The MOSDEF survey: the variation of the dust attenuation curve with metallicity. Astrophys. J. 899, 117 (2020).
Salim, S. & Narayanan, D. The dust attenuation law in galaxies. Annu. Rev. Astron. Astrophys. 58, 529–575 (2020).
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).
Korista, K. T. & Goad, M. R. What the optical recombination lines can tell us about the broad-line regions of active galactic nuclei. Astrophys. J. 606, 749–762 (2004).
Kennicutt Jr, R. C. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).
Conroy, C., Gunn, J. E. & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).
Draine, B. T. & Li, A. Infrared emission from interstellar dust. I. Stochastic heating of small grains. Astrophys. J. 551, 807–824 (2001).
Shen, Y. The mass of quasars. Bull. Astron. Soc. India 41, 61–115 (2013).
Richards, G. T. et al. Spectral energy distributions and multiwavelength selection of type 1 quasars. Astrophys. J. Suppl. Ser. 166, 470–497 (2006).
Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).
Pasha, I. & Miller, T. B. pysersic: a Python package for determining galaxy structural properties via Bayesian inference, accelerated with jax. J. Open Source Softw. 8, 5703 (2023).
Chemerynska, I. et al. JWST UNCOVER: the overabundance of ultraviolet-luminous galaxies at z > 9. Preprint at arxiv.org/abs/2312.05030 (2023).
Atek, H. et al. JWST UNCOVER: discovery of z > 9 galaxy candidates behind the lensing cluster Abell 2744. Mon. Not. R. Astron. Soc. 524, 5486–5496 (2023).
Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61–75 (2002).
Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).
Price-Whelan, A. M. et al. The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
van der Walt, S., Colbert, S. C. & Varoquaux, G. The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020). (PMID: 320155437056644)
Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
Ofek, E. O. MAAT: MATLAB Astronomy and Astrophysics Toolbox. Astrophysics Source Code Library, record ascl:1407.005 1407.005 (ASCL.net, 2014).
تواريخ الأحداث: Date Created: 20240214 Date Completed: 20240405 Latest Revision: 20240405
رمز التحديث: 20240405
DOI: 10.1038/s41586-024-07184-8
PMID: 38354833
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07184-8