دورية أكاديمية

Modeling membrane geometries implicitly in Rosetta.

التفاصيل البيبلوغرافية
العنوان: Modeling membrane geometries implicitly in Rosetta.
المؤلفون: Woods H; Center of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA., Leman JK; Center for Computational Biology, Flatiron Institute, New York, New York, USA., Meiler J; Center of Structural Biology, Vanderbilt University, Nashville, Tennessee, USA.; Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA.; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
المصدر: Protein science : a publication of the Protein Society [Protein Sci] 2024 Mar; Vol. 33 (3), pp. e4908.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Cold Spring Harbor Laboratory Press Country of Publication: United States NLM ID: 9211750 Publication Model: Print Cited Medium: Internet ISSN: 1469-896X (Electronic) Linking ISSN: 09618368 NLM ISO Abbreviation: Protein Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: 2001- : Woodbury, NY : Cold Spring Harbor Laboratory Press
Original Publication: New York, N.Y. : Cambridge University Press, c1992-
مواضيع طبية MeSH: Membrane Proteins*/chemistry , Liposomes*, Lipid Bilayers/chemistry ; Models, Molecular ; Micelles
مستخلص: Interactions between membrane proteins (MPs) and lipid bilayers are critical for many cellular functions. In the Rosetta molecular modeling suite, the implicit membrane energy function is based on a "slab" model, which represent the membrane as a flat bilayer. However, in nature membranes often have a curvature that is important for function and/or stability. Even more prevalent, in structural biology research MPs are reconstituted in model membrane systems such as micelles, bicelles, nanodiscs, or liposomes. Thus, we have modified the existing membrane energy potentials within the RosettaMP framework to allow users to model MPs in different membrane geometries. We show that these modifications can be utilized in core applications within Rosetta such as structure refinement, protein-protein docking, and protein design. For MP structures found in curved membranes, refining these structures in curved, implicit membranes produces higher quality models with structures closer to experimentally determined structures. For MP systems embedded in multiple membranes, representing both membranes results in more favorable scores compared to only representing one of the membranes. Modeling MPs in geometries mimicking the membrane model system used in structure determination can improve model quality and model discrimination.
(© 2024 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.)
References: J Mol Biol. 2010 Aug 6;401(1):56-67. (PMID: 20561532)
Bioinformatics. 2010 Mar 1;26(5):689-91. (PMID: 20061306)
PLoS One. 2011;6(6):e20161. (PMID: 21731610)
Biochim Biophys Acta Biomembr. 2021 Mar 1;1863(3):183533. (PMID: 33340490)
Proteins. 2021 Dec;89(12):1711-1721. (PMID: 34599769)
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16140-5. (PMID: 17911261)
Nat Commun. 2021 Nov 29;12(1):6947. (PMID: 34845212)
Science. 2022 Oct 7;378(6615):49-56. (PMID: 36108050)
PLoS Comput Biol. 2019 Aug 28;15(8):e1007318. (PMID: 31461441)
Bioinformatics. 2004 Nov 22;20(17):2964-72. (PMID: 15180935)
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6. (PMID: 21890895)
Biophys J. 2018 May 8;114(9):2128-2141. (PMID: 29742406)
Front Physiol. 2016 Oct 25;7:494. (PMID: 27826255)
Nature. 2018 Dec;564(7736):372-377. (PMID: 30542154)
Elife. 2016 Jan 29;5:. (PMID: 26824389)
J Neurochem. 2010 Apr;113(2):313-28. (PMID: 20132470)
J Chem Inf Model. 2021 Jun 28;61(6):2884-2896. (PMID: 34029472)
J Am Chem Soc. 2007 Mar 7;129(9):2432-3. (PMID: 17284035)
Proteins. 2009 May 15;75(3):586-97. (PMID: 19003985)
PLoS Comput Biol. 2015 Sep 01;11(9):e1004398. (PMID: 26325167)
J Phys Condens Matter. 2006 Jul 19;18(28):S1281-91. (PMID: 21690841)
Elife. 2017 Dec 12;6:. (PMID: 29231809)
J Chem Theory Comput. 2021 Aug 10;17(8):5248-5261. (PMID: 34310137)
Prog Nucl Magn Reson Spectrosc. 2009 Nov 1;55(4):335-360. (PMID: 20161395)
Protein Sci. 2018 Jan;27(1):341-355. (PMID: 29090504)
J Cell Biol. 2016 Aug 15;214(4):375-87. (PMID: 27528656)
Bioinformatics. 2006 Mar 1;22(5):623-5. (PMID: 16397007)
BMC Bioinformatics. 2017 Feb 20;18(1):115. (PMID: 28219343)
Nucleic Acids Res. 2023 Jan 6;51(D1):D517-D522. (PMID: 36318239)
Nat Rev Mol Cell Biol. 2008 Feb;9(2):112-24. (PMID: 18216768)
PLoS One. 2016 Aug 25;11(8):e0161879. (PMID: 27560519)
Langmuir. 2016 Jul 5;32(26):6624-37. (PMID: 27285636)
J Biol Chem. 1989 Mar 5;264(7):4033-7. (PMID: 2783929)
Protein Sci. 2022 Jan;31(1):209-220. (PMID: 34716622)
Magn Reson Chem. 2006 Jul;44 Spec No:S24-40. (PMID: 16826539)
PLoS Comput Biol. 2021 Mar 17;17(3):e1008818. (PMID: 33730029)
Nat Rev Mol Cell Biol. 2018 May;19(5):281-296. (PMID: 29410529)
Nature. 2021 Aug;596(7873):583-589. (PMID: 34265844)
Proteins. 2003 Aug 1;52(2):176-92. (PMID: 12833542)
Annu Rev Biophys. 2013;42:361-92. (PMID: 23451886)
Biochem Soc Trans. 2018 Oct 19;46(5):1355-1366. (PMID: 30190329)
J Phys Chem B. 2007 Nov 1;111(43):12427-38. (PMID: 17924686)
J Comput Chem. 2013 Jun 30;34(17):1463-75. (PMID: 23580260)
Nat Struct Mol Biol. 2019 Dec;26(12):1158-1166. (PMID: 31740857)
Biochemistry. 2004 Apr 13;43(14):4240-50. (PMID: 15065868)
Biophys J. 2020 Apr 21;118(8):2042-2055. (PMID: 32224301)
J Biol Chem. 2007 Jan 12;282(2):821-5. (PMID: 17130120)
Nucleic Acids Res. 2013 Jan;41(Database issue):D524-9. (PMID: 23203988)
Science. 1997 Apr 4;276(5309):131-3. (PMID: 9082985)
Sci Adv. 2016 Sep 09;2(9):e1501228. (PMID: 27626070)
Structure. 2019 Nov 5;27(11):1721-1734.e5. (PMID: 31522945)
Elife. 2017 Mar 29;6:. (PMID: 28355133)
Science. 2019 Aug 30;365(6456):929-934. (PMID: 31467223)
Nature. 2016 Oct 20;538(7625):329-335. (PMID: 27626386)
Nature. 2014 Jun 5;510(7503):172-175. (PMID: 24899312)
Biophys J. 2012 Jul 18;103(2):169-74. (PMID: 22853893)
Proteins. 2018 Jan;86(1):57-74. (PMID: 29044728)
J Cell Sci. 2011 Aug 15;124(Pt 16):2777-85. (PMID: 21807942)
Channels (Austin). 2011 Sep-Oct;5(5):402-9. (PMID: 21829087)
Protein Sci. 2020 Dec;29(12):2348-2362. (PMID: 33058341)
Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15682-7. (PMID: 17905872)
J Mol Biol. 2002 Nov 22;324(2):319-30. (PMID: 12441110)
معلومات مُعتمدة: R01GM129261 United States NH NIH HHS
فهرسة مساهمة: Keywords: Rosetta; implicit membrane; membrane proteins; protein structure
المشرفين على المادة: 0 (Membrane Proteins)
0 (Liposomes)
0 (Lipid Bilayers)
0 (Micelles)
تواريخ الأحداث: Date Created: 20240215 Date Completed: 20240216 Latest Revision: 20240217
رمز التحديث: 20240217
مُعرف محوري في PubMed: PMC10868433
DOI: 10.1002/pro.4908
PMID: 38358133
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-896X
DOI:10.1002/pro.4908