دورية أكاديمية

Exploratory associations of tacrolimus exposure and clinical outcomes after lung transplantation: A retrospective, single center experience.

التفاصيل البيبلوغرافية
العنوان: Exploratory associations of tacrolimus exposure and clinical outcomes after lung transplantation: A retrospective, single center experience.
المؤلفون: Du W; Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China., Wang X; Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China., Zhang D; Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China., Zuo X; Department of Pharmacy, China-Japan Friendship Hospital, Chaoyang District, Beijing, China. subpharm@163.com.; Department of Dermatology, China-Japan Friendship Hospital, Chaoyang District, Beijing, China. subpharm@163.com.
المصدر: European journal of clinical pharmacology [Eur J Clin Pharmacol] 2024 May; Vol. 80 (5), pp. 747-757. Date of Electronic Publication: 2024 Feb 16.
نوع المنشور: Observational Study; Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 1256165 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1041 (Electronic) Linking ISSN: 00316970 NLM ISO Abbreviation: Eur J Clin Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer.
مواضيع طبية MeSH: Kidney Transplantation* , Lung Transplantation*/adverse effects, Humans ; Tacrolimus/therapeutic use ; Immunosuppressive Agents/therapeutic use ; Cytochrome P-450 CYP3A ; Retrospective Studies ; Antibodies ; Graft Rejection
مستخلص: Purpose: This study aimed to investigate the potential impact of tacrolimus (TAC) exposure on clinical outcomes after lung transplantation.
Methods: This retrospective observational study enrolled a total of 228 lung transplant recipients. TAC trough levels (C 0 ) were collected for 3 intervals: 0-3 months, 3-12 months, and 12-24 months. The intra-patient variability (IPV) was calculated using coefficient of variation. Genotyping of CYP3A5*3 (rs776746) was performed. Patients were further divided into groups based on the C 0 cut-off value of 8 ng/mL and IPV cut-off value of 30%. Cox proportional hazards regression models were used to explore the potential impact of C 0 and IPV on outcomes of interests, including de-novo donor-specific antibodies (dnDSA), chronic lung allograft dysfunction (CLAD) and mortality.
Results: The influence of CYP3A5*3 polymorphism was only significant for C 0 and IPV during the first 3 months. Low C 0 (< 8 ng/mL) at 3-12 months increased the risk of dnDSA (hazard ratio [HR] 2.696, 95% confidence interval [CI] 1.046-6.953) and mortality (HR 2.531, 95% CI 1.368-4.685), while High IPV (≥ 30%) during this period was associated with an increased risk of mortality (HR 2.543, 95% CI 1.336-4.839). Patients with Low C 0 /High IPV combination had significantly higher risks for dnDSA (HR 4.381, 95% CI 1.279-15.008) and survival (HR 6.179, 95% CI 2.598-14.698), surpassing the predictive power provided by C 0 or IPV alone.
Conclusion: A combination of Low C 0 /High IPV might be considered in categorizing patients towards risk of adverse clinical outcomes following lung transplantation.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W et al (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther 98:19–24. https://doi.org/10.1002/cpt.113. (PMID: 10.1002/cpt.113258011464481158)
Sikma MA, van Maarseveen EM, van de Graaf EA, Kirkels JH, Verhaar MC, Donker DW et al (2015) Pharmacokinetics and toxicity of tacrolimus early after heart and lung transplantation. Am J Transplant 15:2301–2313. https://doi.org/10.1111/ajt.13309. (PMID: 10.1111/ajt.1330926053114)
Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L et al (2019) Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit 41:261–307. https://doi.org/10.1097/ftd.0000000000000640. (PMID: 10.1097/ftd.000000000000064031045868)
Yin J, Hsu T, Kerr JS, Steiner R, Awdishu L (2020) Relationship between 2-hour tacrolimus concentrations and clinical outcomes in long term kidney transplantation. Pharmacy (Basel, Switzerland). https://doi.org/10.3390/pharmacy8020060. (PMID: 10.3390/pharmacy8020060322601627146344)
Hon YY, Chamberlain CE, Kleiner DE, Ring MS, Hale DA, Kirk AD et al (2010) Evaluation of tacrolimus abbreviated area-under-the-curve monitoring in renal transplant patients who are potentially at risk for adverse events. Clin Transplant 24:557–563. https://doi.org/10.1111/j.1399-0012.2009.01143.x. (PMID: 10.1111/j.1399-0012.2009.01143.x199254702889034)
Frassetto LA, Tan-Tam CC, Barin B, Browne M, Wolfe AR, Stock PG et al (2014) Best single time point correlations with AUC for cyclosporine and tacrolimus in HIV-infected kidney and liver transplant recipients. Transplantation 97:702–707. https://doi.org/10.1097/01.Tp.0000441097.30094.31. (PMID: 10.1097/01.Tp.0000441097.30094.31243899064018220)
Park Y, Lee H, Eum SH, Ko EJ, Min JW, Yoon SH et al (2022) Combined impact of the inter and intra-patient variability of tacrolimus blood level on allograft outcomes in kidney transplantation. Front Immunol 13:1037566. https://doi.org/10.3389/fimmu.2022.1037566. (PMID: 10.3389/fimmu.2022.1037566364668439709474)
Schumacher L, Leino AD, Park JM (2021) Tacrolimus intrapatient variability in solid organ transplantation: A multiorgan perspective. Pharmacotherapy 41:103–118. https://doi.org/10.1002/phar.2480. (PMID: 10.1002/phar.248033131078)
Mendoza Rojas A, Hesselink DA, van Besouw NM, Baan CC, van Gelder T (2019) Impact of low tacrolimus exposure and high tacrolimus intra-patient variability on the development of de novo anti-HLA donor-specific antibodies in kidney transplant recipients. Expert Rev Clin Immunol 15:1323–1331. https://doi.org/10.1080/1744666x.2020.1693263. (PMID: 10.1080/1744666x.2020.169326331721605)
Leino AD, King EC, Jiang W, Vinks AA, Klawitter J, Christians U et al (2019) Assessment of tacrolimus intrapatient variability in stable adherent transplant recipients: Establishing baseline values. Am J Transplant 19:1410–1420. https://doi.org/10.1111/ajt.15199. (PMID: 10.1111/ajt.1519930506623)
Whalen HR, Glen JA, Harkins V, Stevens KK, Jardine AG, Geddes CC et al (2017) High intrapatient tacrolimus variability is associated with worse outcomes in renal transplantation using a low-dose tacrolimus immunosuppressive regime. Transplantation 101:430–436. https://doi.org/10.1097/tp.0000000000001129. (PMID: 10.1097/tp.000000000000112926950724)
Gallagher HM, Sarwar G, Tse T, Sladden TM, Hii E, Yerkovich ST et al (2015) Erratic tacrolimus exposure, assessed using the standard deviation of trough blood levels, predicts chronic lung allograft dysfunction and survival. J Heart Lung Transplant 34:1442–1448. https://doi.org/10.1016/j.healun.2015.05.028. (PMID: 10.1016/j.healun.2015.05.02826186804)
Kao CC, Segraves J, Parulekar AD (2021) Tacrolimus monitoring parameters are not associated with acute cellular rejection following lung transplantation. Eur J Clin Pharmacol 77:63–69. https://doi.org/10.1007/s00228-020-02976-z. (PMID: 10.1007/s00228-020-02976-z32803287)
Ensor CR, Iasella CJ, Harrigan KM, Morrell MR, Moore CA, Shigemura N et al (2018) Increasing tacrolimus time-in-therapeutic range is associated with superior one-year outcomes in lung transplant recipients. Am J Transplant 18:1527–1533. https://doi.org/10.1111/ajt.14723. (PMID: 10.1111/ajt.1472329513387)
Seibert SR, Schladt DP, Wu B, Guan W, Dorr C, Remmel RP et al (2018) Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients. Clin Transplant 32:e13424. https://doi.org/10.1111/ctr.13424. (PMID: 10.1111/ctr.13424303186466317347)
Stefanović NZ, Veličković-Radovanović RM, Danković KS, Mitić BP, Paunović GJ, Cvetković MB et al (2020) Combined effect of inter- and intrapatient variability in tacrolimus exposure on graft impairment within a 3-year period following kidney transplantation: a single-center experience. Eur J Drug Metab Pharmacokinet 45:749–760. https://doi.org/10.1007/s13318-020-00644-2. (PMID: 10.1007/s13318-020-00644-232886348)
Baghai Arassi M, Gauche L, Schmidt J, Höcker B, Rieger S, Süsal C et al (2022) Association of intraindividual tacrolimus variability with de novo donor-specific HLA antibody development and allograft rejection in pediatric kidney transplant recipients with low immunological risk. Pediatr Nephrol 37:2503–2514. https://doi.org/10.1007/s00467-022-05426-3. (PMID: 10.1007/s00467-022-05426-3351669209395307)
Verleden GM, Glanville AR, Lease ED, Fisher AJ, Calabrese F, Corris PA et al (2019) Chronic lung allograft dysfunction: Definition, diagnostic criteria, and approaches to treatment-A consensus report from the Pulmonary Council of the ISHLT. J Heart Lung Transplant 38:493–503. https://doi.org/10.1016/j.healun.2019.03.009. (PMID: 10.1016/j.healun.2019.03.00930962148)
Davis S, Gralla J, Klem P, Tong S, Wedermyer G, Freed B et al (2018) Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant 18:907–915. https://doi.org/10.1111/ajt.14504. (PMID: 10.1111/ajt.1450428925597)
Rodrigo E, Segundo DS, Fernández-Fresnedo G, López-Hoyos M, Benito A, Ruiz JC et al (2016) Within-patient variability in tacrolimus blood levels predicts kidney graft loss and donor-specific antibody development. Transplantation 100:2479–2485. https://doi.org/10.1097/tp.0000000000001040. (PMID: 10.1097/tp.000000000000104026703349)
Ryu JH, Choi S, Lee HJ, Kim YT, Kim YW, Yang J (2019) Low early posttransplant serum tacrolimus levels are associated with poor patient survival in lung transplant patients. Ann Thorac Med 14:186–191. https://doi.org/10.4103/atm.ATM&#95;160&#95;18. (PMID: 10.4103/atm.ATM_160_18313337686611203)
Darley DR, Carlos L, Hennig S, Liu Z, Day R, Glanville AR (2019) Tacrolimus exposure early after lung transplantation and exploratory associations with acute cellular rejection. Eur J Clin Pharmacol 75:879–888. https://doi.org/10.1007/s00228-019-02658-5. (PMID: 10.1007/s00228-019-02658-530859243)
Miano TA, Flesch JD, Feng R, Forker CM, Brown M, Oyster M et al (2020) Early tacrolimus concentrations after lung transplant are predicted by combined clinical and genetic factors and associated with acute kidney injury. Clin Pharmacol Ther 107:462–470. https://doi.org/10.1002/cpt.1629. (PMID: 10.1002/cpt.162931513279)
Destere A, Premaud A, Monchaud C, Marquet P, Woillard JB (2023) Longitudinal exposure to tacrolimus and new-onset diabetes mellitus in renal transplant patients. Ther Drug Monit 45:102–109. https://doi.org/10.1097/ftd.0000000000001035. (PMID: 10.1097/ftd.000000000000103536624577)
Gonzales HM, McGillicuddy JW, Rohan V, Chandler JL, Nadig SN, Dubay DA et al (2020) A comprehensive review of the impact of tacrolimus intrapatient variability on clinical outcomes in kidney transplantation. Am J Transplant 20:1969–1983. https://doi.org/10.1111/ajt.16002. (PMID: 10.1111/ajt.1600232406604)
Coste G, Lemaitre F (2022) The role of intra-patient variability of tacrolimus drug concentrations in solid organ transplantation: a focus on liver, heart, lung and pancreas. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14020379. (PMID: 10.3390/pharmaceutics14020379352141748879752)
Taber DJ, Su Z, Fleming JN, McGillicuddy JW, Posadas-Salas MA, Treiber FA et al (2017) Tacrolimus trough concentration variability and disparities in african american kidney transplantation. Transplantation 101:2931–2938. https://doi.org/10.1097/tp.0000000000001840. (PMID: 10.1097/tp.0000000000001840286581995709143)
Süsal C, Döhler B (2019) Late intra-patient tacrolimus trough level variability as a major problem in kidney transplantation: a collaborative transplant study report. Am J Transplant 19:2805–2813. https://doi.org/10.1111/ajt.15346. (PMID: 10.1111/ajt.1534630859672)
Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C et al (2016) Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am J Transplant 16:574–582. https://doi.org/10.1111/ajt.13495. (PMID: 10.1111/ajt.1349526485092)
Ro H, Min SI, Yang J, Moon KC, Kim YS, Kim SJ et al (2012) Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit 34:680–685. https://doi.org/10.1097/FTD.0b013e3182731809. (PMID: 10.1097/FTD.0b013e318273180923149441)
Nuchjumroon A, Vadcharavivad S, Singhan W, Poosoonthornsri M, Chancharoenthana W, Udomkarnjananun S et al (2022) Comparison of tacrolimus intra-patient variability during 6–12 months after kidney transplantation between cyp3a5 expressers and nonexpressers. J Clin Med. https://doi.org/10.3390/jcm11216320. (PMID: 10.3390/jcm11216320363625489658797)
معلومات مُعتمدة: 2022-NHLHCRF-PY-15 National High Level Hospital Clinical Research Funding; 2022-NHLHCRF-LX-03 National High Level Hospital Clinical Research Funding; 82273523 National Natural Science Foundation Project
فهرسة مساهمة: Keywords: Chronic lung allograft dysfunction; Donor-specific antibody; Lung transplantation; Tacrolimus
المشرفين على المادة: WM0HAQ4WNM (Tacrolimus)
0 (Immunosuppressive Agents)
EC 1.14.14.1 (Cytochrome P-450 CYP3A)
0 (Antibodies)
تواريخ الأحداث: Date Created: 20240216 Date Completed: 20240409 Latest Revision: 20240722
رمز التحديث: 20240722
DOI: 10.1007/s00228-024-03640-6
PMID: 38363388
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1041
DOI:10.1007/s00228-024-03640-6