دورية أكاديمية

Evolutionary analysis of rainstorm momentum and non-stationary variating patterns in response to climatic changes across diverse terrains.

التفاصيل البيبلوغرافية
العنوان: Evolutionary analysis of rainstorm momentum and non-stationary variating patterns in response to climatic changes across diverse terrains.
المؤلفون: Huang CL; Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan., Hsu NS; Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan. nsshue@ntu.edu.tw.
المصدر: Scientific reports [Sci Rep] 2024 Feb 16; Vol. 14 (1), pp. 3920. Date of Electronic Publication: 2024 Feb 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: This study aims to analyze time-series measurements encompassing rainstorm events with over a century of datasets to identify rainstorm evolution and dimensional transitions in non-stationarity. Rainstorm events are identified using partial duration series (PDS) to extract changes in rainstorm characteristics, namely maximum intensity (MAXI), duration (D), total rainfall (TR), and average rainfall intensity (ARI), in response to climate change. Ensemble empirical mode decomposition is used for trend filtering and non-stationary identification to explore spatiotemporal insight patterns. Trend models for the first-second-order moments of rainstorm characteristics are used to formulate the identified mean-variance trends using combined multi-dimensional linear-parabolic regression. Best-fitting combinations of various distributions (probability density functions) and trend models for multiple characteristic series are identified based on the Akaike information criterion. We analyze the dimensional transition in rainfall non-stationarity based on sensitivity analysis using PDS to determine its natural geophysical causes. The integrated methodology was applied to the data retrieved from nine weather stations in Taiwan. Our findings reveal rainstorm characteristics of "short D but high rainfall intensity" or "lower MAXI but high TR" across multiple stations. The parabolic trend of the first-order moment (i.e., mean) of ARI, D, and TR appears at the endpoint of the mountain ranges. Areas receiving monsoons and those on the windward plain show a rising parabolic trend in the first- and second-order moments (i.e., mean-variance) characterizing MAXI, implying that the occurrence frequency and magnitude of extreme MAXI increases. Non-stationary transitions in MAXI appear for mountain ranges exposed to the monsoon co-movement effect on both windward and leeward sides. Stations in the plains and rift valleys show upgraded and downgraded transitions in the non-stationary dimensions for D, respectively.
(© 2024. The Author(s).)
References: Fowler, A. M. & Hennessy, K. J. Potential impacts of global warming on the frequency and magnitude of heavy precipitation. Nat. Hazards 11, 283–303 (1995). (PMID: 10.1007/BF00613411)
Hoeppe, P. Trends in weather related disasters—Consequences for insurers and society. Weather Clim. Extremes 11, 70–79. https://doi.org/10.1016/j.wace.2015.10.002 (2016). (PMID: 10.1016/j.wace.2015.10.002)
Mechler, R. & Bouwer, L. M. Understanding trends and projections of disaster losses and climate change: Is vulnerability the missing link?. Clim. Change 133, 23–35. https://doi.org/10.1007/s10584-014-1141-0 (2015). (PMID: 10.1007/s10584-014-1141-0)
Estrada, F., Perron, P. & Yamamoto, Y. Anthropogenic influence on extremes and risk hotspots. Sci. Rep. 13, 35. https://doi.org/10.1038/s41598-022-27220-9 (2023). (PMID: 10.1038/s41598-022-27220-9365933549807642)
Houghton, E. et al. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 1996).
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241. https://doi.org/10.1007/s10584-011-0156-z (2011). (PMID: 10.1007/s10584-011-0156-z)
Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699. https://doi.org/10.1175/jcli3990.1 (2006). (PMID: 10.1175/jcli3990.1)
Parry, M. et al. Climate Change 2007—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC. (Cambridge University Press, 2007).
Parry, S., Marsh, T. & Kendon, M. 2012: From drought to floods in England and Wales. Weather 68, 268. https://doi.org/10.1002/wea.2152 (2013). (PMID: 10.1002/wea.2152)
Kamruzzaman, M. et al. Spatiotemporal drought analysis in Bangladesh using the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI). Sci. Rep. 12, 20694. https://doi.org/10.1038/s41598-022-24146-0 (2022). (PMID: 10.1038/s41598-022-24146-0364507479712418)
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508. https://doi.org/10.1038/nclimate2941 (2016). (PMID: 10.1038/nclimate2941)
Marengo, J. A. et al. Two contrasting severe seasonal extremes in Tropical South America in 2012: Flood in amazonia and drought in Northeast Brazil. J. Clim. 26, 9137–9154. https://doi.org/10.1175/jcli-d-12-00642.1 (2013). (PMID: 10.1175/jcli-d-12-00642.1)
Thompson, S. E. et al. Developing predictive insight into changing water systems: Use-inspired hydrologic science for the Anthropocene. Hydrol. Earth Syst. Sci. 17, 5013. https://doi.org/10.5194/hess-17-5013-2013 (2013). (PMID: 10.5194/hess-17-5013-2013)
Ali, G. et al. Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep. 11, 6935. https://doi.org/10.1038/s41598-021-86412-x (2021). (PMID: 10.1038/s41598-021-86412-x337673207994564)
Sveinsson, O. G. B., Salas, J. D., Boes, D. C. & Pielke, R. A. Modeling the dynamics of long-term variability of hydroclimatic processes. J. Hydrometeorol. 4, 489–505. https://doi.org/10.1175/1525-7541(2003)004%3c0489:mtdolv%3e2.0.co;2 (2003). (PMID: 10.1175/1525-7541(2003)004<0489:mtdolv>2.0.co;2)
Kallache, M., Rust, H. W. & Kropp, J. Trend assessment: Applications for hydrology and climate research. Nonlin. Processes Geophys. 12, 201–210. https://doi.org/10.5194/npg-12-201-2005 (2005). (PMID: 10.5194/npg-12-201-2005)
Tawn, J. A. An extreme-value theory model for dependent observations. J. Hydrol. 101, 227–250. https://doi.org/10.1016/0022-1694(88)90037-6 (1988). (PMID: 10.1016/0022-1694(88)90037-6)
Strupczewski, W. G. & Feluch, W. W. in Integrated Approach to Environmental Data Management Systems (eds Nilgun B. Harmancioglu, M. Necdet Alpaslan, Sevinc D. Ozkul, & Vijay P. Singh) 291–300 (Springer Netherlands, 1997).
Strupczewski, W. G., Singh, V. P. & Feluch, W. Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation. J. Hydrol. 248, 123–142. https://doi.org/10.1016/S0022-1694(01)00397-3 (2001). (PMID: 10.1016/S0022-1694(01)00397-3)
Strupczewski, W. G., Singh, V. P. & Mitosek, H. T. Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers. J. Hydrol. 248, 152–167. https://doi.org/10.1016/S0022-1694(01)00399-7 (2001). (PMID: 10.1016/S0022-1694(01)00399-7)
Strupczewski, W. G. & Kaczmarek, Z. Non-stationary approach to at-site flood frequency modelling. II. Weighted least squares estimation. J. Hydrol. 248, 143–151. https://doi.org/10.1016/S0022-1694(01)00398-5 (2001). (PMID: 10.1016/S0022-1694(01)00398-5)
Katz, R. W., Parlange, M. B. & Naveau, P. Statistics of extremes in hydrology. Adv. Water Resources 25, 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8 (2002). (PMID: 10.1016/S0309-1708(02)00056-8)
Huang, M. et al. Increasing typhoon impact and economic losses due to anthropogenic warming in Southeast China. Sci. Rep. 12, 14048. https://doi.org/10.1038/s41598-022-17323-8 (2022). (PMID: 10.1038/s41598-022-17323-8360760019458652)
Cunderlik, J. M. & Burn, D. H. Non-stationary pooled flood frequency analysis. J. Hydrol. 276, 210–223. https://doi.org/10.1016/S0022-1694(03)00062-3 (2003). (PMID: 10.1016/S0022-1694(03)00062-3)
Villarini, G. et al. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv. Water Resources 32, 1255–1266. https://doi.org/10.1016/j.advwatres.2009.05.003 (2009). (PMID: 10.1016/j.advwatres.2009.05.003)
Salas, J. D. & Obeysekera, J. Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. J. Hydrol. Eng. 19, 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820 (2014). (PMID: 10.1061/(ASCE)HE.1943-5584.0000820)
Bracewell, R. N. The Fourier Transform and Its Applications (McGraw-Hill, 1986).
Morlet, J. 233–261 (Springer Berlin Heidelberg).
Chavez, M. & Cazelles, B. Detecting dynamic spatial correlation patterns with generalized wavelet coherence and non-stationary surrogate data. Sci. Rep. 9, 7389. https://doi.org/10.1038/s41598-019-43571-2 (2019). (PMID: 10.1038/s41598-019-43571-2310891576517435)
Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory 36, 961 (1990). (PMID: 10.1109/18.57199)
Jain, S. & Lall, U. Floods in a changing climate: Does the past represent the future?. Water Resources Res. 37, 3193–3205. https://doi.org/10.1029/2001WR000495 (2001). (PMID: 10.1029/2001WR000495)
Kwon, H.-H., Lall, U. & Khalil, A. F. Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resources Res. https://doi.org/10.1029/2006WR005258 (2007). (PMID: 10.1029/2006WR005258)
Huang, N. E., Long, S. R. & Shen, Z. in Advances in Applied Mechanics Vol. 32 (eds John W. Hutchinson & Theodore Y. Wu) 59–117C (Elsevier, 1996).
Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. Royal Soc. London Series A Math Phys. Eng. Sci. 454, 903–995. https://doi.org/10.1098/rspa.1998.0193 (1998). (PMID: 10.1098/rspa.1998.0193)
Wu, Z. & Huang, N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adaptive Data Anal. 01, 1–41. https://doi.org/10.1142/s1793536909000047 (2009). (PMID: 10.1142/s1793536909000047)
Huang, N. E. et al. On instantaneous frequency. Adv. Adaptive Data Anal. 01, 177–229. https://doi.org/10.1142/s1793536909000096 (2009). (PMID: 10.1142/s1793536909000096)
Chang, C.-Y., Chiang, J. C. H., Wehner, M. F., Friedman, A. R. & Ruedy, R. Sulfate aerosol control of tropical atlantic climate over the twentieth century. J. Clim. 24, 2540–2555. https://doi.org/10.1175/2010jcli4065.1 (2011). (PMID: 10.1175/2010jcli4065.1)
Franzke, C. Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Clim. 25, 4172–4183. https://doi.org/10.1175/jcli-d-11-00293.1 (2012). (PMID: 10.1175/jcli-d-11-00293.1)
Wu, Z., Huang, N. E., Wallace, J. M., Smoliak, B. V. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dynam. 37, 759. https://doi.org/10.1007/s00382-011-1128-8 (2011). (PMID: 10.1007/s00382-011-1128-8)
Kuo, C.-C., Gan, T. Y. & Chan, S. Regional intensity-duration-frequency curves derived from ensemble empirical mode decomposition and scaling property. J. Hydrol. Eng. 18, 66–74. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000612 (2013). (PMID: 10.1061/(ASCE)HE.1943-5584.0000612)
Hawinkel, P. et al. A time series processing tool to extract climate-driven interannual vegetation dynamics using Ensemble Empirical Mode Decomposition (EEMD). Remote Sensing Environ. 169, 375–389. https://doi.org/10.1016/j.rse.2015.08.024 (2015). (PMID: 10.1016/j.rse.2015.08.024)
Kim, T., Shin, J.-Y., Kim, S. & Heo, J.-H. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. J. Hydrol. 557, 726–739. https://doi.org/10.1016/j.jhydrol.2017.12.069 (2018). (PMID: 10.1016/j.jhydrol.2017.12.069)
Rafiee, J., Rafiee, M. A. & Tse, P. W. Application of mother wavelet functions for automatic gear and bearing fault diagnosis. Expert Syst. Appl. 37, 4568–4579. https://doi.org/10.1016/j.eswa.2009.12.051 (2010). (PMID: 10.1016/j.eswa.2009.12.051)
Madsen, H., Rasmussen, P. F. & Rosbjerg, D. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modelling. Water Resources Res. 33, 747–757. https://doi.org/10.1029/96WR03848 (1997). (PMID: 10.1029/96WR03848)
Madsen, H., Pearson, C. P. & Rosbjerg, D. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 2. Regional modelling. Water Resources Res. 33, 759–769. https://doi.org/10.1029/96WR03849 (1997). (PMID: 10.1029/96WR03849)
Agilan, V. & Umamahesh, N. V. What are the best covariates for developing non-stationary rainfall Intensity-Duration-Frequency relationship?. Adv. Water Resources 101, 11–22. https://doi.org/10.1016/j.advwatres.2016.12.016 (2017). (PMID: 10.1016/j.advwatres.2016.12.016)
Demaria, E. M. C., Goodrich, D. & Keefer, T. Frequency analysis of extreme sub-daily precipitation under stationary and non-stationary conditions across two contrasting hydroclimatic environments. Hydrol. Earth Syst. Sci. Discuss. 1–28, 2017. https://doi.org/10.5194/hess-2017-247 (2017). (PMID: 10.5194/hess-2017-247)
Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P. & Bruneau, P. The Gumbel mixed model for flood frequency analysis. Journal of Hydrology 226, 88–100. https://doi.org/10.1016/S0022-1694(99)00168-7 (1999). (PMID: 10.1016/S0022-1694(99)00168-7)
Yue, S. The gumbel mixed model applied to storm frequency analysis. Water Resources Manag. 14, 377–389. https://doi.org/10.1023/A:1011124423923 (2000). (PMID: 10.1023/A:1011124423923)
Yue, S. & Rasmussen, P. Bivariate frequency analysis: Discussion of some useful concepts in hydrological application. Hydrol. Process. 16, 2881–2898. https://doi.org/10.1002/hyp.1185 (2002). (PMID: 10.1002/hyp.1185)
Kao, S.-C. & Govindaraju, R. S. A bivariate frequency analysis of extreme rainfall with implications for design. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD008522 (2007). (PMID: 10.1029/2007JD008522)
Ignaccolo, M. & De Michele, C. A point based Eulerian definition of rain event based on statistical properties of inter drop time intervals: An application to Chilbolton data. Adv. Water Resources 33, 933–941. https://doi.org/10.1016/j.advwatres.2010.04.002 (2010). (PMID: 10.1016/j.advwatres.2010.04.002)
Joo, J., Lee, J., Kim, J. H., Jun, H. & Jo, D. Inter-event time definition setting procedure for urban drainage systems. Water 6, 45–58 (2014). (PMID: 10.3390/w6010045)
Medina-Cobo, M. T., García-Marín, A. P., Estévez, J. & Ayuso-Muñoz, J. L. The identification of an appropriate Minimum Inter-event Time (MIT) based on multifractal characterization of rainfall data series. Hydrol. Process. 30, 3507–3517. https://doi.org/10.1002/hyp.10875 (2016). (PMID: 10.1002/hyp.10875)
Kim, D. H., Yoo, C. & Kim, T.-W. Application of spatial EOF and multivariate time series model for evaluating agricultural drought vulnerability in Korea. Adv. Water Resources 34, 340–350. https://doi.org/10.1016/j.advwatres.2010.12.010 (2011). (PMID: 10.1016/j.advwatres.2010.12.010)
Yoo, J., Kwon, H.-H., Kim, T.-W. & Ahn, J.-H. Drought frequency analysis using cluster analysis and bivariate probability distribution. J. Hydrol. 420–421, 102–111. https://doi.org/10.1016/j.jhydrol.2011.11.046 (2012). (PMID: 10.1016/j.jhydrol.2011.11.046)
Tallaksen, L. M., Madsen, H. & Clausen, B. On the definition and modelling of streamflow drought duration and deficit volume. Hydrol. Sci. J. 42, 15–33. https://doi.org/10.1080/02626669709492003 (1997). (PMID: 10.1080/02626669709492003)
Scaini, A., Sánchez, N., Vicente-Serrano, S. M. & Martínez-Fernández, J. SMOS-derived soil moisture anomalies and drought indices: A comparative analysis usingin situmeasurements. Hydrol. Process. 29, 373. https://doi.org/10.1002/hyp.10150 (2015). (PMID: 10.1002/hyp.10150)
Oikonomou, P. D., Karavitis, C. A., Tsesmelis, D. E., Kolokytha, E. & Maia, R. Drought characteristics assessment in Europe over the past 50 years. Water Resources Manag. 34, 4757–4772. https://doi.org/10.1007/s11269-020-02688-0 (2020). (PMID: 10.1007/s11269-020-02688-0)
Sutanto, S. J. & Van Lanen, H. A. J. Streamflow drought: Implication of drought definitions and its application for drought forecasting. Hydrol. Earth Syst. Sci. 25, 3991–4023. https://doi.org/10.5194/hess-25-3991-2021 (2021). (PMID: 10.5194/hess-25-3991-2021)
Palynchuk, B. & Guo, Y. Threshold analysis of rainstorm depth and duration statistics at Toronto, Canada. J. Hydrol. 348, 535–545. https://doi.org/10.1016/j.jhydrol.2007.10.023 (2008). (PMID: 10.1016/j.jhydrol.2007.10.023)
Sordo-Ward, A., Bianucci, P., Garrote, L. & Granados, A. The influence of the annual number of storms on the derivation of the flood frequency curve through event-based simulation. Water 8, 335 (2016). (PMID: 10.3390/w8080335)
Dunkerley, D. Identifying individual rain events from pluviograph records: A review with analysis of data from an Australian dryland site. Hydrol. Process. 22, 5024–5036. https://doi.org/10.1002/hyp.7122 (2008). (PMID: 10.1002/hyp.7122)
Germer, S., Elsenbeer, H. & Moraes, J. M. Throughfall and temporal trends of rainfall redistribution in an open tropical rainforest, south-western Amazonia (Rondônia, Brazil). Hydrol. Earth Syst. Sci. 10, 383–393. https://doi.org/10.5194/hess-10-383-2006 (2006). (PMID: 10.5194/hess-10-383-2006)
معلومات مُعتمدة: NSTC 111-2811-M-002-127 National Science and Technology Council
تواريخ الأحداث: Date Created: 20240216 Latest Revision: 20240219
رمز التحديث: 20240220
DOI: 10.1038/s41598-024-53939-8
PMID: 38365984
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-53939-8