دورية أكاديمية

Growth performance, meat quality, strength of jejunum and leg bones of both sexes Cherry Valley ducks fed with zeolite.

التفاصيل البيبلوغرافية
العنوان: Growth performance, meat quality, strength of jejunum and leg bones of both sexes Cherry Valley ducks fed with zeolite.
المؤلفون: Wlaźlak S; Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland. sebastian.wlazlak@pbs.edu.pl., Biesek J; Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland., Banaszak M; Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, 85-084, Bydgoszcz, Poland.
المصدر: Scientific reports [Sci Rep] 2024 Feb 16; Vol. 14 (1), pp. 3938. Date of Electronic Publication: 2024 Feb 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Ducks*/metabolism , Zeolites*, Female ; Animals ; Male ; Jejunum ; Chickens ; Diet ; Leg Bones ; Meat/analysis ; Water/metabolism ; Animal Feed/analysis
مستخلص: Zeolite, as a natural mineral, could be a good additive for ducks, in line with pro-environmental trends. The study aimed to evaluate zeolite additives in feed for broiler ducks of both sexes on production results, meat quality, and the strength of the jejunum, tibia, and femur. The experiment used 200 Cherry Valley ducks, divided into a control group of males (CM) and females (CF) and an experimental group of males (ZM) and females (ZF). In the control groups, a commercial diet was used. In the experimental groups, 1% zeolite was added. The ZM group demonstrated higher body weight and weight gain than the CM group. Zeolite reduced the feed conversion ratio. A higher liver weight was found in the experimental group (ZM). Notably, zeolite influenced the weight of male pectoral muscles. Higher water loss in the pectoral muscles and higher protein content in the leg muscles were found in the same group. Females had a higher weight of neck and wings with skin. Female pectoral muscles had lower protein and water content. Zeolite in feed at a 1% level for broiler ducks could be recommended as a natural additive that positively affects the ducks' production results concerning good quality meat.
(© 2024. The Author(s).)
References: AVEC Annual Report. Retrieved on 10 November 2023 from https://avec-poultry.eu/resources/annual-reports/ (2023).
Biswas, S. et al. Technological investigation into duck meat and its products—a potential alternative to chicken. World’s Poult. Sci. J. 75, 609–620. https://doi.org/10.1017/S004393391900062X (2019). (PMID: 10.1017/S004393391900062X)
Arshad, M. S. et al. Influence of E-beam irradiation on microbiological and physicochemical properties and fatty acid profile of frozen duck meat. Food Sci. Nutr. 8, 1020–1029. https://doi.org/10.1002/fsn3.1386 (2020). (PMID: 10.1002/fsn3.1386321488107020261)
Dankowiakowska, A., Kozłowska, I. & Bednarczyk, M. Probiotics, prebiotics and snybiotics in poultry—mode of action, limitation, and achievements. J. Cent. Eur. Agric. 14, 467–478. https://doi.org/10.5513/JCEA01/14.1.1222 (2013). (PMID: 10.5513/JCEA01/14.1.1222)
Al-Khalaifah, H. S. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult. Sci. 97, 3807–3815. https://doi.org/10.3382/ps/pey160 (2018). (PMID: 10.3382/ps/pey16030165527)
El-Deek, A. A. et al. Alternative feed ingredients in the finisher diets for sustainable broiler production. Sci. Rep. 10, 17743. https://doi.org/10.1038/s41598-020-74950-9 (2022). (PMID: 10.1038/s41598-020-74950-9)
Wlaźlak, S., Pietrzak, E., Biesek, J. & Dunisławska, A. Modulation of the immune system of chickens a key factor in maintaining poultry production—a review. Poult. Sci. 102, 102785. https://doi.org/10.1016/j.psj.2023.102785 (2023). (PMID: 10.1016/j.psj.2023.1027853726764210244701)
Prandecki, K., Wrzaszcz, W. & Zieliński, M. Environmental and climate challenges to agriculture in Poland in the context of objectives adopted in the European Green Deal Strategy. Sustainability 13, 10318. https://doi.org/10.3390/su131810318 (2021). (PMID: 10.3390/su131810318)
Eroglu, N., Emekci, M. & Athanassiou, C. G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 97, 3487–3499. https://doi.org/10.1002/jsfa.8312 (2017). (PMID: 10.1002/jsfa.831228295317)
Gilani, A., Kermanshahi, H., Golian, A. & Seifi, S. Appraisal of the impact of aluminosilicate use on the health and performance of poultry. Turk. J. Vet. Anim. Sci. 40, 255–262. https://doi.org/10.3906/vet-1501-103 (2016). (PMID: 10.3906/vet-1501-103)
Banaszak, M., Biesek, J. & Adamski, M. Wheat litter and feed with aluminosilicates for improved growth and meat quality in broiler chickens. PeerJ 9, e11918. https://doi.org/10.7717/peerj.11918 (2021). (PMID: 10.7717/peerj.11918344300848349159)
Banaszak, M., Biesek, J. & Adamski, M. Aluminosilicates at different levels in rye litter and feed affect the growth and meat quality of broiler chickens. Vet. Res. Commun. 46, 37–47. https://doi.org/10.1007/s11259-021-09827-x (2022). (PMID: 10.1007/s11259-021-09827-x34478030)
Adamović, M., Stojanović, M., Grubišić, M., Ileš, D. & Milojković, J. Importance of aluminosilicate minerals in safe food production. Maced. J. Anim. Sci. 1, 175–180 (2011). (PMID: 10.54865/mjas111175a)
Cook, D. F. et al. Amending poultry broiler litter to prevent the development of stable fly, Stomoxys calcitrans (Diptera: Muscidae) and other nuisance flies. J. Econ. Entomol. 111, 2966–2973. https://doi.org/10.1093/jee/toy277 (2018). (PMID: 10.1093/jee/toy27730256976)
Burmańczuk, A., Roliński, Z., Kowalski, C., Burmańczuk, N. & Markiewicz, W. Possible use of natural zeolites in animal production and environment protection. J. Elem. 20, 803–811 (2015).
Banaszak, M. et al. Impact of aluminosilicates on productivity, carcass traits, meat quality, and jejunum morphology of broiler chickens. Poult. Sci. 99, 7169–7177. https://doi.org/10.1016/j.psj.2020.08.073 (2020). (PMID: 10.1016/j.psj.2020.08.073332486347704995)
Hcini, E. et al. Does supplemental zeolite (clinoptilolite) affect growth performance, meat texture, oxidative stress and production of polyunsaturated fatty acid of Turkey poults?. Lipids Health Dis. 17, 1–9. https://doi.org/10.1186/s12944-018-0820-7 (2018). (PMID: 10.1186/s12944-018-0820-7)
Larina, Y., Ezhkov, V., Fayzrakhmanov, R., & Ezhkova, A. Meat productivity and quality of goose meat when using nanostructural zeolite in feeding. In BIO Web of Conferences 27, 00028; EDP Sciences. https://doi.org/10.1051/bioconf/20202700028 (2020).
Semenenko, M., Kuzminova, E., Grin, V., Rogaleva, E., & Semenenko, K. Possibilities of using natural aluminosilicates in the development of medicines at hepatosis in poultry. In E3S Web of Conferences 175, 04002 EDP Sciences. https://doi.org/10.1051/e3sconf/202017504002 (2020).
Prvulovic, D., Kojic, D., Grubor-Lajsic, G. & Kosarcic, S. The effects of dietary inclusion of hydrated aluminosilicate on performance and biochemical parameters of broiler chickens. Turk. J. Vet. Anim. Sci. 32, 183–189 (2008).
Banaszak, M., Biesek, J. & Adamski, M. Growth performance and meat quality from broiler chickens reared with zeolite and halloysite in feed and straw pellet. Anim. Sci. J. 92, 13649. https://doi.org/10.1111/asj.13649 (2021). (PMID: 10.1111/asj.13649)
Biesek, J., Dunisławska, A., Banaszak, M., Siwek, M. & Adamski, M. The impact of hydrated aluminosilicates supplemented in litter and feed on chicken growth, muscle traits and gene expression in the intestinal mucosa. Animals 1, 2224. https://doi.org/10.3390/ani11082224 (2021). (PMID: 10.3390/ani11082224)
Nadziakiewicz, M., Micek, P. & Wojtysiak, D. Effects of dietary halloysite supplementation on broiler chicken’s blood parameters, carcass and meat quality, and bone characteristics: a preliminary study. Ann. Anim. Sci. 23, 129–139. https://doi.org/10.2478/aoas-2022-0037 (2023). (PMID: 10.2478/aoas-2022-0037)
Abdelrahman, M. M. et al. Using natural zeolite as a feed additive in Broilers’ diets for enhancing growth performance, carcass characteristics, and meat quality traits. Life 13, 1548. https://doi.org/10.3390/life13071548 (2023). (PMID: 10.3390/life130715483751192310382045)
Biesek, J., Banaszak, M. & Adamski, M. Ducks’ growth, meat quality, bone strength, and jejunum strength depend on zeolite in feed and long-term factors. Animals 11, 1015. https://doi.org/10.3390/ani11041015 (2021). (PMID: 10.3390/ani11041015339168808067159)
Karamanlis, X. et al. The effect of a natural zeolite (clinoptilolite) on the performance of broiler chickens and the quality of their litter. Asian-Austral. J. Anim. Sci. 21, 1642–1650. https://doi.org/10.5713/ajas.2008.70652 (2008). (PMID: 10.5713/ajas.2008.70652)
An, J. et al. Effects of supplemental different clay minerals in broiler chickens under cyclic heat stress. J. Anim. Sci. Technol. 65, 113. https://doi.org/10.5187/jast.2022.e94 (2023). (PMID: 10.5187/jast.2022.e943709390810119463)
Wawrzyniak, A. et al. The effect of dietary supplementation of transcarpathian zeolite on intestinal morphology in female broiler chickens. J. Appl. Poult. Res. 26, 421–430. https://doi.org/10.3382/japr/pfx011 (2017). (PMID: 10.3382/japr/pfx011)
Jamroz, D., Wertelecki, T., Houszka, M. & Kamel, C. Influence of diet type on the inclusion of plant origin active substances on morphological and histochemical characteristics of the stomach and jejunum walls in chicken. J. Anim. Physiol. Anim. Nutr. 90, 255–268. https://doi.org/10.1111/j.1439-0396.2005.00603.x (2006). (PMID: 10.1111/j.1439-0396.2005.00603.x)
Fetterer, R. H., Miska, K. B., Jenkins, M. C. & Wong, E. A. Expression of nutrient transporters in duodenum, jejunum, and ileum of Eimeria maxima-infected broiler chickens. Parasitol. Res. 113, 3891–3894 (2014). (PMID: 10.1007/s00436-014-4114-325193050)
Zhou, P. et al. Effects of dietary supplementation with the combination of zeolite and attapulgite on growth performance, nutrient digestibility, secretion of digestive enzymes and intestinal health in broiler chickens. Asian-Austral. J. Anim. Sci. 27, 1311. https://doi.org/10.5713/ajas.2014.14241 (2014). (PMID: 10.5713/ajas.2014.14241)
Tang, Z., Wen, C., Li, P., Wang, T. & Zhou, Y. Effect of zinc-bearing zeolite clinoptilolite on growth performance, nutrient retention, digestive enzyme activities, and intestinal function of broiler chickens. Biol. Trace Elem. Res. 158, 51–57 (2014). (PMID: 10.1007/s12011-014-9900-324515449)
Khambualai, O. et al. Effects of dietary natural zeolite including plant extract on growth performance and intestinal histology in Aigamo ducks. Br. Poult. Sci. 50, 123–130. https://doi.org/10.1080/00071660802662788 (2009). (PMID: 10.1080/0007166080266278819234936)
Ly, J., Grageola, F., Lemus, C. & Castro, M. Ileal and rectal digestibility of nutrients in diets based on leucaena (Leucaena leucocephala (Lam.) de Wit) for pigs Influence of the inclusion of zeolite. J. Anim. Vet. Adv. 6, 371–376 (2007).
Wang, H., Yin, J. & Kim, I. H. Experimental study on the effect of zeolite (clinoptilolite) on the growth performance, nutrient digestibility, and faecal microbiota of finishing pigs. J. Appl. Anim. Res. 49, 154–157. https://doi.org/10.1080/09712119.2021.1914063 (2021). (PMID: 10.1080/09712119.2021.1914063)
Osman, A. A., Soliman, S. A. & Doaa, E. S. Effects of dietary zeolite supplementation on milk yield, milk composition, digestion coefficients and nutritive values in Holsten cows. J. Anim. Poult. Fish Prod. 10, 17–20 (2021).
Dunislawska, A., Biesek, J., Banaszak, M., Siwek, M. & Adamski, M. Effect of zeolite supplementation on gene expression in the intestinal mucosa in the context of immunosafety support in poultry. Genes 13, 732. https://doi.org/10.3390/genes13050732 (2022). (PMID: 10.3390/genes13050732356271169140869)
Pavlak, M. S. D. et al. Impact of various dietary levels of zeolite on broiler performance, digestibility, and carcass traits. S. Afr. J. Anim. Sci. 52, 400–408. https://doi.org/10.4314/sajas.v52i3.15 (2022). (PMID: 10.4314/sajas.v52i3.15)
Ditta, Y. A., Mahad, S. & Bacha, U. Aflatoxins: their toxic effect on poultry and recent advances in their treatment. Mycotoxins Impact Manage. Strat. 20, 1–153 (2018).
Shariatmadari, F. The application of zeolite in poultry production. World’s Poult. Sci. J. 64, 76–84 (2008). (PMID: 10.1017/S0043933907001730)
Lucke, A., Doupovec, B., Paulsen, P., Zebeli, Q. & Böhm, J. Effects of low to moderate levels of deoxynivalenol on feed and water intake, weight gain, and slaughtering traits of broiler chickens. Mycotoxin Res. 33, 261–271 (2017). (PMID: 10.1007/s12550-017-0284-z286879985644695)
Chen, Y. et al. The protective effects of modified palygorskite on the broilers fed a purified zearalenone-contaminated diet. Poult. Sci. 98, 3802–3810. https://doi.org/10.3382/ps/pez085 (2019). (PMID: 10.3382/ps/pez08530839081)
Basha, H. A., Goma, A. A., Taha, A. E. & AbouElkhair, R. Effect of different forms of natural zeolite (clinoptilolite) on productive performance and behavioral patterns of broiler chickens. Int. J. Agric. Sci. Vet. Med. 4, 1–11 (2016).
Svihus, B. et al. Performance and digestive function of broiler chickens given grit in the diet. Brit. Poult. Sci. 58, 530–535. https://doi.org/10.1080/00071668.2017.1332404 (2017). (PMID: 10.1080/00071668.2017.1332404)
Pavlak, M. S. et al. Zeolite and corn with different compositions in broiler chickens feeding. Poult. Sci. 102, 10249. https://doi.org/10.1016/j.psj.2023.102494 (2023). (PMID: 10.1016/j.psj.2023.102494)
Saçakli, P., Calik, A., Bayraktaroğlu, A. G., Ergün, A. & Şahan, Ö. Effect of clinoptilolite and/or phytase on broiler growth performance, carcass characteristics, intestinal histomorphology and tibia calcium and phosphorus levels. Kafkas Üniv. Vet. Fak. Derg. 21, 729–737 (2015).
Lorentz, L. et al. Production and body composition traits of broilers in relation to breast weight evaluated by path analysis. Sci. Agric. 68, 320–325. https://doi.org/10.1590/S0103-90162011000300008 (2011). (PMID: 10.1590/S0103-90162011000300008)
Chen, X. D., Ma, Q. G., Tang, M. Y. & Ji, C. Development of breast muscle and meat quality in Arbor Acres broilers, Jingxing 100 crossbred chickens and Beijing fatty chickens. Meat Sci. 77, 220–227. https://doi.org/10.1016/j.meatsci.2007.03.008 (2007). (PMID: 10.1016/j.meatsci.2007.03.00822061594)
Widyaratne, G. P. & Drew, M. D. Effects of protein level and digestibility on the growth and carcass characteristics of broiler chickens. Poult. Sci. 90, 595–603. https://doi.org/10.3382/ps.2010-01098 (2011). (PMID: 10.3382/ps.2010-0109821325230)
Kaewtapee, C., Prahkarnkaeo, K. & Bunchasak, C. Effect of sex on growth curve, production performance and carcass quality of Cherry Valley ducks. J. Appl. Anim. Sci. 11, 9–18 (2018).
Chauhan, S. S. et al. Glycolysis and pH decline terminate prematurely in oxidative muscles despite the presence of excess glycogen. Meat Muscle Biol. 3, 254–264 (2019). (PMID: 10.22175/mmb2019.02.0006)
Wideman, N., O’bryan, C. A. & Crandall, P. G. Factors affecting poultry meat colour and consumer preferences—a review. World’s Poult. Sci. J. 72, 353–366 (2016). (PMID: 10.1017/S0043933916000015)
Shabani, A., Dastar, B., Hassani, S., Khomeiri, M. & Shabanpour, B. Decreasing the effects of aflatoxins on color and oxidative stability of broiler meats using nanozeolite. J. Agric. Sci. Technol. 18, 109–121 (2016).
Huang, X. & Ahn, D. U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 28, 1275–1285. https://doi.org/10.1007/s10068-019-00631-7 (2019). (PMID: 10.1007/s10068-019-00631-7316959266811465)
Szmańko, T., Lesiów, T. & Górecka, J. The water-holding capacity of meat: A reference analytical method. Food Chem. 357, 129727. https://doi.org/10.1016/j.foodchem.2021.129727 (2021). (PMID: 10.1016/j.foodchem.2021.12972733964628)
Bowker, B. & Zhuang, H. Relationship between water-holding capacity and protein denaturation in broiler breast meat. Poult. Sci. 94, 1657–1664. https://doi.org/10.3382/ps/pev120 (2015). (PMID: 10.3382/ps/pev12026009757)
Jung, S. et al. Comparison of pH, water holding capacity and color among meats from Korean native chickens. Korean J. Poult. Sci. 42, 101–108. https://doi.org/10.5536/KJPS.2015.42.2.101 (2015). (PMID: 10.5536/KJPS.2015.42.2.101)
Lesiów, T. & Kijowski, T. Impact of PSE and DFD meat on poultry processing-a review. Pol. J. Food Nutr. Sci. 12, 3–8 (2003).
Safaei, M. Effects of inclusion kaolin, bentonite and zeolite in dietary on chemical composition of broiler chickens meat. Asian J. Anim. Vet. Adv. 9, 56–63 (2014). (PMID: 10.3923/ajava.2014.56.63)
Barteczko, J. & Lasek, O. Effect of varied protein and energy contents in mixture on meat quality of broiler chicken. Slovak J. Anim. Sci. 41, 173–178 (2008).
Bordoni, A. & Danesi, F. Poultry Meat Nutritive Value and Human Health (Woodhead Publishing, 2017). (PMID: 10.1016/B978-0-08-100763-1.00011-8)
Chartrin, P. et al. Effects of intramuscular fat levels on sensory characteristics of duck breast meat. Poult. Sci. 85, 914–922. https://doi.org/10.1093/ps/85.5.914 (2006). (PMID: 10.1093/ps/85.5.91416673772)
Eleroğlu, H., Yalçın, H. & Yıldırım, A. Dietary effects of Ca-zeolite supplementation on some blood and tibial bone characteristics of broilers. S. Afr. J. Anim. Sci. 41, 319–330. https://doi.org/10.4314/sajas.v41i4.1 (2011). (PMID: 10.4314/sajas.v41i4.1)
Safaeikatouli, M., Boldaji, F., Dastar, B. & Hassani, S. Growth response and tibia bone characteristics in broilers fed diets containing kaolin, bentonite and zeolite. J. Anim. Feed Sci. 21, 334–344 (2012). (PMID: 10.22358/jafs/66085/2012)
Smulikowska, S., & Rutkowski, A. Nutritional recommendations and nutritional value of poultry feeds. In Cooperative Work. Fifth Edition—Changed and Supplemented. Polish Academy of Science, Institute of Physiology and Animal Nutrition, Jabłonna, Poland, 2019, 58–65 ISBN 978-83-951612-1-6 (in Polish) (2018).
Biesek, J., Banaszak, M., Kądziołka, K., Wlaźlak, S. & Adamski, M. Growth of broiler chickens, and physical features of the digestive system, and leg bones after aluminosilicates used. Sci. Rep. 12, 20425. https://doi.org/10.1038/s41598-022-25003-w (2022). (PMID: 10.1038/s41598-022-25003-w364433869702739)
PN-ISO 6496:2002 (2002) Pasze—oznaczanie wilgotności i zawartości innych substancji lotnych (in Polish) (2002).
Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed (Text with EEA relevance).
PN-EN ISO 5983-1:2006 Pasze—oznaczanie zawartości azotu i obliczanie zawartości białka surowego—Część 1: Metoda Kjeldahla (in Polish) (2006).
PN-ISO 6865:2002 Pasze—oznaczanie zawartości włókna surowego—metoda z pośrednią fltracją (in Polish) (2002).
PN-EN ISO 6492:2005 Pasze—oznaczanie zawartości tłuszczu (in Polish) (2005).
PN-R-64785: 1994—Pasze. Oznaczanie zawartości skrobi metodą polarymetryczną (1994).
PN-EN ISO 16472:2007 Pasze—oznaczanie zawartości włókna obojętnodetergentowego po traktowaniu amylazą (aNDF) (in Polish) (2007).
PN-EN ISO 13906:2009 Pasze—oznaczanie zawartości włókna kwaśnodetergentowego (ADF) i ligniny kwaśnodetergentowej (ADL) (in Polish) (2009).
Ziołecki, J. & Doruchowski, W. Methods for Assessing Slaughter Value COBRD Publisher (Poznań, 1989).
Honikel, K. O. The water binding of meat. Fleischwirtschaft 67, 1098–1102 (1987).
Grau, R. & Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft 4, 295–297 (1952).
PN-A-82109:2010 Meat and meat preparations—determination of fat, protein, and water content. Near Infrared Transmission Spectrometry (NIT) using Artifcial Neural Network (ANN) calibration, Lublin, Poland (in Polish) (2010).
معلومات مُعتمدة: UMO-2021/43/D/NZ9/01756 Narodowe Centrum Nauki
المشرفين على المادة: 1318-02-1 (Zeolites)
059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20240216 Date Completed: 20240219 Latest Revision: 20240220
رمز التحديث: 20240220
مُعرف محوري في PubMed: PMC10873398
DOI: 10.1038/s41598-024-54393-2
PMID: 38366002
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-54393-2