دورية أكاديمية

Experimental apical periodontitis alters salivary biochemical composition and induces local redox state disturbances in the salivary glands of male rats.

التفاصيل البيبلوغرافية
العنوان: Experimental apical periodontitis alters salivary biochemical composition and induces local redox state disturbances in the salivary glands of male rats.
المؤلفون: Vazão AR; Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Claudino L; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Pimpinato PP; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Sampaio LV; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Fiais GA; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., de Freitas RN; Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Justo MP; Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Brito VGB; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Oliveira SHP; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Lima RR; Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil., Cintra LTÂ; Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil.; Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil., Chaves-Neto AH; Programa de Pós-Graduação em Ciências, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil. antonio.hernandes@unesp.br.; Department of Basic Sciences, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil. antonio.hernandes@unesp.br.; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas-SBFis, School of Dentistry of Araçatuba-UNESP-Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil. antonio.hernandes@unesp.br.
المصدر: Clinical oral investigations [Clin Oral Investig] 2024 Feb 16; Vol. 28 (2), pp. 154. Date of Electronic Publication: 2024 Feb 16.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 9707115 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-3771 (Electronic) Linking ISSN: 14326981 NLM ISO Abbreviation: Clin Oral Investig
أسماء مطبوعة: Publication: Berlin : Springer-Verlag
Original Publication: Berlin : Springer, c1997-
مواضيع طبية MeSH: Tumor Necrosis Factor-alpha*/metabolism , Periapical Periodontitis*/metabolism, Rats ; Male ; Animals ; Rats, Wistar ; Salivary Glands ; Submandibular Gland ; Parotid Gland ; Saliva/chemistry ; Oxidation-Reduction ; Antioxidants/metabolism
مستخلص: Objectives: The objective was to evaluate the effects of experimental apical periodontitis on the inflammatory, functional, biochemical, and redox parameters of the parotid and submandibular glands in rats.
Materials and Methods: Twenty 12-week-old male Wistar rats were randomly divided into two groups (n = 10): a control group and apical periodontitis group. After 28 days, the saliva was collected for salivary flow rate and biochemistry composition. Both glands were sampled for quantification of the tumor necrosis factor-alpha (TNF-α) and biochemical analyses of redox state.
Results: TNF-α concentrations were higher in both salivary glands adjacent to the periapical lesions in animals with apical periodontitis and also compared to the control group. The apical periodontitis group increased the salivary amylase, chloride, potassium, calcium, and phosphate. The total oxidant capacity increased in the parotid gland adjacent to the periapical lesions in the same rat and compared to the control group. Conversely, the total antioxidant capacity of the parotid glands on both sides in the apical periodontitis group was lower than that in the control group. Furthermore, glutathione peroxidase activity increased in the submandibular gland adjacent to the apical periodontitis group compared to the control group.
Conclusions: Experimental apical periodontitis alters salivary biochemical composition, in addition to increasing inflammatory marker and inducing local disturbances in the redox state in the parotid and submandibular glands of male rats.
Clinical Relevance: Apical periodontitis could exacerbate the decline in oral health by triggering dysfunction in the salivary glands.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Bag AK, Curé JK, Chapman PR et al (2018) Imaging of inflammatory disorders of salivary glands. Neuroimaging Clin N Am 28:255–272. https://doi.org/10.1016/J.NIC.2018.01.006. (PMID: 10.1016/J.NIC.2018.01.00629622118)
Proctor GB, Shaalan AM (2021) Disease-induced changes in salivary gland function and the composition of saliva. J Dent Res 100:1201–1209. https://doi.org/10.1177/00220345211004842. (PMID: 10.1177/0022034521100484233870742)
Busch L, Miozza V, Sterin-Borda L, Borda E (2009) Increased leukotriene concentration in submandibular glands from rats with experimental periodontitis. Inflamm Res 58:423–430. https://doi.org/10.1007/S00011-009-0008-8. (PMID: 10.1007/S00011-009-0008-819347252)
Ekuni D, Endo Y, Irie K et al (2010) Imbalance of oxidative/anti-oxidative status induced by periodontitis is involved in apoptosis of rat submandibular glands. Arch Oral Biol 55:170–176. https://doi.org/10.1016/J.ARCHORALBIO.2009.11.013. (PMID: 10.1016/J.ARCHORALBIO.2009.11.01320035925)
Shikayama T, Fujita-Yoshigaki J, Sago-Ito M et al (2020) Hematogenous apoptotic mechanism in salivary glands in chronic periodontitis. Arch Oral Biol 117. https://doi.org/10.1016/j.archoralbio.2020.104775.
Miozza V, Borda E, S-Borda LS, Busch L (2010) Increase nitric oxide synthase activity in parotid glands from rats with experimental periodontitis. Oral Dis 16:801–806. https://doi.org/10.1111/J.1601-0825.2010.01691.X.
Miozza V, Borda E, Sterin-Borda L, Busch L (2009) Experimental periodontitis induces a cAMP-dependent increase in amylase activity in parotid glands from male rats. Inflammation 32:357–363. https://doi.org/10.1007/S10753-009-9142-2. (PMID: 10.1007/S10753-009-9142-219669869)
Miozza V, Sánchez G, Sterin-Borda L, Busch L (2011) Enhancement of carbachol-induced amylase secretion in parotid glands from rats with experimental periodontitis. Arch Oral Biol 56:1514–1520. https://doi.org/10.1016/J.ARCHORALBIO.2011.06.006. (PMID: 10.1016/J.ARCHORALBIO.2011.06.00621741619)
Busch L, Sterin-Borda L, Borda E (2008) Beta-adrenoceptor alterations coupled with secretory response and experimental periodontitis in rat submandibular glands. Arch Oral Biol 53:509–516. https://doi.org/10.1016/J.ARCHORALBIO.2007.12.010. (PMID: 10.1016/J.ARCHORALBIO.2007.12.01018275933)
Nakamura-Kiyama M, Ono K, Masuda W et al (2014) Changes of salivary functions in experimental periodontitis model rats. Arch Oral Biol 59:125–132. https://doi.org/10.1016/j.archoralbio.2013.11.001. (PMID: 10.1016/j.archoralbio.2013.11.00124370183)
Segura-Egea JJ, Martín-González J, Castellanos-Cosano L (2015) Endodontic medicine: connections between apical periodontitis and systemic diseases. Int Endod J 48:933–951. https://doi.org/10.1111/IEJ.12507. (PMID: 10.1111/IEJ.1250726174809)
Jakovljevic A, Nikolic N, Jacimovic J et al (2020) Prevalence of apical periodontitis and conventional nonsurgical root canal treatment in general adult population: an updated systematic review and meta-analysis of cross-sectional studies published between 2012 and 2020. J Endod 46:1371–1386. https://doi.org/10.1016/J.JOEN.2020.07.007. (PMID: 10.1016/J.JOEN.2020.07.00732673634)
Cantiga-Silva C, Estrela C, Segura-Egea JJ et al (2021) Inflammatory profile of apical periodontitis associated with liver fibrosis in rats: histological and immunohistochemical analysis. Int Endod J 54:1353–1361. https://doi.org/10.1111/IEJ.13519. (PMID: 10.1111/IEJ.1351933733459)
Sasaki H, Hirai K, Martins MC et al (2016) Interrelationship between periapical lesion and systemic metabolic disorders. Curr Pharm Des 22:2204–2215. https://doi.org/10.2174/1381612822666160216145107.
Tibúrcio-Machado CS, Michelon C, Zanatta FB et al (2021) The global prevalence of apical periodontitis: a systematic review and meta-analysis. Int Endod J 54:712–735. https://doi.org/10.1111/IEJ.13467. (PMID: 10.1111/IEJ.1346733378579)
Gomes MS, Blattner TC, Sant’Ana Filho M et al (2013) Can apical periodontitis modify systemic levels of inflammatory markers? A systematic review and meta-analysis. J Endod 39:1205–1217. https://doi.org/10.1016/j.joen.2013.06.014.
Rashmi N, Galhotra V, Goel P et al (2017) Assessment of C-reactive proteins, cytokines, and plasma protein levels in hypertensive patients with apical periodontitis. J Contemp Dent Pract 18:516–521. https://doi.org/10.5005/jp-journals-10024-2076. (PMID: 10.5005/jp-journals-10024-207628621285)
Stys LPA, Böttcher DE, Scarparo RK et al (2022) Serum levels of inflammatory markers and HbA1c in patients with type 2 diabetes and apical periodontitis: preliminary findings. Aust Endod J 48:105–115. https://doi.org/10.1111/AEJ.12569. (PMID: 10.1111/AEJ.1256934608703)
Astolphi RD, Curbete MMH, Colombo NH et al (2013) Periapical lesions decrease insulin signal and cause insulin resistance. J Endod 39:648–652. https://doi.org/10.1016/j.joen.2012.12.031. (PMID: 10.1016/j.joen.2012.12.03123611384)
Conti LC, Segura-Egea JJ, Cardoso CBM et al (2020) Relationship between apical periodontitis and atherosclerosis in rats: lipid profile and histological study. Int Endod J 53:1387–1397. https://doi.org/10.1111/iej.13350. (PMID: 10.1111/iej.1335032573791)
Astolphi RD, Curbete MM, Chiba FY et al (2015) Periapical lesions decrease insulin signaling in rat skeletal muscle. J Endod 41:1305–1310. https://doi.org/10.1016/j.joen.2015.04.002. (PMID: 10.1016/j.joen.2015.04.00226027876)
Tsosura TVS, dos Santos RM, Chaves Neto AH et al (2021) Maternal apical periodontitis increases insulin resistance and modulates the antioxidant defense system in the gastrocnemius muscle of adult offspring. J Endod 47:1126–1131. https://doi.org/10.1016/j.joen.2021.04.003. (PMID: 10.1016/j.joen.2021.04.00333864881)
dos Santos RM, Tsosura TVS, Belardi BE et al (2023) Melatonin decreases plasma TNF-α and improves nonenzymatic antioxidant defence and insulin sensitivity in rats with apical periodontitis fed a high-fat diet. Int Endod J 56:164–178. https://doi.org/10.1111/iej.13852. (PMID: 10.1111/iej.1385236261317)
Barcelos RCS, Rosa HZ, Roversi K et al (2020) Apical periodontitis induces changes on oxidative stress parameters and increases Na+/K+-ATPase activity in adult rats. Arch Oral Biol 118. https://doi.org/10.1016/j.archoralbio.2020.104849.
MilojevicSamanovic A, Jakovljevic V, Vasovic M et al (2021) Cardiac, biochemical and histopathological analysis reveals impaired heart function in hypertensive rats with apical periodontitis. Int Endod J 54:1581–1596. https://doi.org/10.1111/iej.13562. (PMID: 10.1111/iej.13562)
Xiao S, Lei H, Li P et al (2023) Is oxidative stress involved in the hepatic inflammatory response to apical periodontitis? A comparative study in normal and hyperlipidaemic rat. Int Endod J 56:722–733. https://doi.org/10.1111/IEJ.13907. (PMID: 10.1111/IEJ.1390736825367)
Yoon YJ, Kim D, Tak KY et al (2022) Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands. Nat Commun 13. https://doi.org/10.1038/s41467-022-30934-z.
Miranda LFB, Lima CV, Pagin R et al (2023) Effect of processing methods of human saliva on the proteomic profile and protein-mediated biological processes. J Proteome Res 22:857–870. https://doi.org/10.1021/acs.jproteome.2c00652. (PMID: 10.1021/acs.jproteome.2c0065236779809)
Maciejczyk M, Skutnik-Radziszewska A, Zieniewska I et al (2019) Antioxidant defense, oxidative modification, and salivary gland function in an early phase of cerulein pancreatitis. Oxid Med Cell Longev 2019. https://doi.org/10.1155/2019/8403578.
Skutnik-Radziszewska A, Maciejczyk M, Fejfer K et al (2020) Salivary antioxidants and oxidative stress in psoriatic patients: can salivary total oxidant status and oxidative status index be a plaque psoriasis biomarker? Oxid Med Cell Longev 2020. https://doi.org/10.1155/2020/9086024.
Zukowski P, Maciejczyk M, Matczuk J et al (2018) Effect of N-acetylcysteine on antioxidant defense, oxidative modification, and salivary gland function in a rat model of insulin resistance. Oxid Med Cell Longev 2018. https://doi.org/10.1155/2018/6581970.
Ibuki FK, Bergamaschi CT, da Silva Pedrosa M, Nogueira FN (2020) Effect of vitamin C and E on oxidative stress and antioxidant system in the salivary glands of STZ-induced diabetic rats. Arch Oral Biol 116. https://doi.org/10.1016/J.ARCHORALBIO.2020.104765.
Özgür A, Terzi S, Özdemir D et al (2019) Protective effect of whortleberry extract on salivary gland damage induced by neck irradiation in rats. Ear Nose Throat J 98:64–69. https://doi.org/10.1177/0145561319846868. (PMID: 10.1177/0145561319846868)
Bhattarai KR, Lee HY, Kim SH et al (2018) Potential application of Ixeris dentata in the prevention and treatment of aging-induced dry mouth. Nutrients 10. https://doi.org/10.3390/NU10121989.
Fagundes NCF, Fernandes LMP, Paraense RSDO et al (2016) Binge drinking of ethanol during adolescence induces oxidative damage and morphological changes in salivary glands of female rats. Oxid Med Cell Longev 2016. https://doi.org/10.1155/2016/7323627.
Takahashi A, Inoue H, Mishima K et al (2015) Evaluation of the effects of quercetin on damaged salivary secretion. PLoS One 10. https://doi.org/10.1371/JOURNAL.PONE.0116008.
Bomfin LE, Braga CM, Oliveira TA et al (2017) 5-Fluorouracil induces inflammation and oxidative stress in the major salivary glands affecting salivary flow and saliva composition. Biochem Pharmacol 145:34–45. https://doi.org/10.1016/J.BCP.2017.08.024. (PMID: 10.1016/J.BCP.2017.08.02428867645)
Cintra LTA, Samuel RO, Azuma MM et al (2016) Multiple apical periodontitis influences serum levels of cytokines and nitric oxide. J Endod 42:747–751. https://doi.org/10.1016/j.joen.2016.01.022. (PMID: 10.1016/j.joen.2016.01.02227059651)
Tsosura TVS, Chiba FY, Mattera MSLC et al (2019) Maternal apical periodontitis is associated with insulin resistance in adult offspring. Int Endod J 52:1040–1050. https://doi.org/10.1111/iej.13096. (PMID: 10.1111/iej.1309630756431)
Cypriano ML, dos Santos Ramos GHA, de Oliveira ACF et al (2021) Effect of testosterone replacement therapy and mate tea (Ilex paraguariensis) on biochemical, functional and redox parameters of saliva in orchiectomized rats. Arch Oral Biol 132. https://doi.org/10.1016/j.archoralbio.2021.105289.
de Oliveira ACF, Brito VGB, Ramos GHA dos S et al (2023) Analysis of salivary flow rate, biochemical composition, and redox status in orchiectomized spontaneously hypertensive rats. Arch Oral Biol 152. https://doi.org/10.1016/J.ARCHORALBIO.2023.105732.
dos Santos DR, Fiais GA, de Oliveira Passos A et al (2022) Effects of orchiectomy and testosterone replacement therapy on redox balance and salivary gland function in Wistar rats. J Steroid Biochem Mol Biol 218. https://doi.org/10.1016/j.jsbmb.2021.106048.
Hartree EF (1972) Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 48:422–427. https://doi.org/10.1016/0003-2697(72)90094-2. (PMID: 10.1016/0003-2697(72)90094-24115981)
Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008. (PMID: 10.1016/j.clinbiochem.2005.08.00816214125)
Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/S0076-6879(78)52032-6. (PMID: 10.1016/S0076-6879(78)52032-6672633)
Mesquita CS, Oliveira R, Bento F et al (2014) Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Anal Biochem 458:69–71. https://doi.org/10.1016/J.AB.2014.04.034. (PMID: 10.1016/J.AB.2014.04.03424814294)
Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76. https://doi.org/10.1006/ABIO.1996.0292. (PMID: 10.1006/ABIO.1996.02928660627)
Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888. (PMID: 13967893)
Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474. https://doi.org/10.1111/J.1432-1033.1974.TB03714.X. (PMID: 10.1111/J.1432-1033.1974.TB03714.X4215654)
Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3. (PMID: 10.1016/S0076-6879(84)05016-36727660)
Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333. https://doi.org/10.1016/S0076-6879(81)77046-0. (PMID: 10.1016/S0076-6879(81)77046-07329310)
Cintra LTA, da Silva Facundo AC, Azuma MM et al (2013) Pulpal and periodontal diseases increase triglyceride levels in diabetic rats. Clin Oral Investig 17:1595–1599. https://doi.org/10.1007/s00784-012-0853-7. (PMID: 10.1007/s00784-012-0853-723053705)
Justo MP, Cardoso C de BM, Cantiga-Silva C et al (2022) Curcumin reduces inflammation in rat apical periodontitis. Int Endod J 55:1241–1251. https://doi.org/10.1111/iej.13819.
Cintra LTA, Da Silva Facundo AC, Prieto AKC et al (2014) Blood profile and histology in oral infections associated with diabetes. J Endod 40:1139–1144. https://doi.org/10.1016/j.joen.2014.01.034. (PMID: 10.1016/j.joen.2014.01.03425069921)
Cintra LTA, Samuel RO, Facundo ACS et al (2014) Relationships between oral infections and blood glucose concentrations or HbA1c levels in normal and diabetic rats. Int Endod J 47:228–237. https://doi.org/10.1111/iej.12136. (PMID: 10.1111/iej.1213623906323)
Samuel RO, Ervolino E, de AzevedoQueiroz ÍO et al (2019) Th1/Th2/Th17/Treg balance in apical periodontitis of normoglycemic and diabetic rats. J Endod 45:1009–1015. https://doi.org/10.1016/j.joen.2019.05.003. (PMID: 10.1016/j.joen.2019.05.00331227229)
do Nascimento IV, Rodrigues MI de Q, Isaias PHC et al (2022) Chronic systemic corticosteroid therapy influences the development of pulp necrosis and experimental apical periodontitis, exacerbating the inflammatory process and bone resorption in rats. Int Endod J 55:646–659. https://doi.org/10.1111/IEJ.13724.
Azuma MM, Gomes-Filho JE, Ervolino E et al (2018) Omega-3 fatty acids reduce inflammation in rat apical periodontitis. J Endod 44:604–608. https://doi.org/10.1016/j.joen.2017.12.008. (PMID: 10.1016/j.joen.2017.12.00829397217)
Vasques AMV, da Silva ACR, Bueno CRE et al (2023) Inflammatory profile of apical periodontitis exacerbated by cigarette smoke inhalation: histological and immunohistochemical analysis in rats. Int Endod J 56:465–474. https://doi.org/10.1111/iej.13883. (PMID: 10.1111/iej.1388336585248)
Zhou J, Kawai T, Yu Q (2017) Pathogenic role of endogenous TNF-α in the development of Sjögren’s-like sialadenitis and secretory dysfunction in non-obese diabetic mice. Lab Invest 97:458–467. https://doi.org/10.1038/labinvest.2016.141. (PMID: 10.1038/labinvest.2016.141280678965376226)
Fukuoka CY, Vicari HP, Sipert CR et al (2020) Early effect of laser irradiation in signaling pathways of diabetic rat submandibular salivary glands. PLoS One 15. https://doi.org/10.1371/JOURNAL.PONE.0236727.
Pereira RF, Cintra LTA, Tessarin GWL et al (2017) Periapical lesions increase macrophage infiltration and inflammatory signaling in muscle tissue of rats. J Endod 43:982–988. https://doi.org/10.1016/j.joen.2017.01.030. (PMID: 10.1016/j.joen.2017.01.03028416312)
Dal-Fabbro R, Marques-de-Almeida M, Cosme-Silva L et al (2019) Chronic alcohol consumption increases inflammation and osteoclastogenesis in apical periodontitis. Int Endod J 52:329–336. https://doi.org/10.1111/iej.13014. (PMID: 10.1111/iej.1301430218448)
Kramer PR, He J, Puri J, Bellinger LL (2012) A non-invasive model for measuring nociception after tooth pulp exposure. J Dent Res 91:883–887. https://doi.org/10.1177/0022034512454297. (PMID: 10.1177/0022034512454297227973213420391)
Bhattarai KR, Lee HY, Kim SH et al (2018) Ixeris dentata extract increases salivary secretion through the regulation of endoplasmic reticulum stress in a diabetes-induced xerostomia rat model. Int J Mol Sci 19. https://doi.org/10.3390/ijms19041059.
Lee HJ, Lee YJ, Kwon HC et al (2006) Radioprotective effect of heat shock protein 25 on submandibular glands of rats. Am J Pathol 169:1601–1611. https://doi.org/10.2353/AJPATH.2006.060327. (PMID: 10.2353/AJPATH.2006.060327170715841780208)
Nagler RM, Laufer D (1998) Protection against irradiation-induced damage to salivary glands by adrenergic agonist administration. Int J Radiat Oncol Biol Phys 40:477–481. https://doi.org/10.1016/S0360-3016(97)00574-9. (PMID: 10.1016/S0360-3016(97)00574-99457838)
González CR, Amer MAR, Vitullo AD et al (2016) Immunolocalization of the TGFB1 system in submandibular gland fibrosis after experimental periodontitis in rats. Acta Odontol Latinoam 29:138–143. (PMID: 27731483)
Lee JH, Lin JD, Fong JI et al (2013) The adaptive nature of the bone-periodontal ligament-cementum complex in a ligature-induced periodontitis rat model. Biomed Res Int 2013. https://doi.org/10.1155/2013/876316.
Dal-Fabbro R, Cosme-Silva L, Capalbo LC et al (2021) Excessive caffeine intake increases bone resorption associated with periapical periodontitis in rats. Int Endod J 54:1861–1870. https://doi.org/10.1111/iej.13578. (PMID: 10.1111/iej.1357834037986)
Shabani E, Kalantari H, Kalantar M et al (2021) Berberine ameliorates testosterone-induced benign prostate hyperplasia in rats. BMC Complement Med Ther 21. https://doi.org/10.1186/s12906-021-03472-2.
Tenovuo J (1997) Community Dentistry and Oral Epidemiology Salivary parameters of relevance for assessing caries activity in individuals and populations. Community Dent Oral Epidemiol 25:82–86. https://doi.org/10.1111/j.1600-0528.1997.tb00903.x.
Almståhl A, Wikström M (2003) Electrolytes in stimulated whole saliva in individuals with hyposalivation of different origins. Arch Oral Biol 48:337–344. https://doi.org/10.1016/S0003-9969(02)00200-5. (PMID: 10.1016/S0003-9969(02)00200-512711377)
Amer M, Elverdin JC, Fernández-Solari J et al (2011) Reduced methacholine-induced submandibular salivary secretion in rats with experimental periodontitis. Arch Oral Biol 56:421–427. https://doi.org/10.1016/j.archoralbio.2010.11.004. (PMID: 10.1016/j.archoralbio.2010.11.00421145037)
Haug S, Marthinussen M (2019) Acute dental pain and salivary biomarkers for stress and inflammation in patients with pulpal or periapical inflammation. J Oral Facial Pain Headache 33:227–233. https://doi.org/10.11607/ofph.2007.
Arce-Franco M, Dominguez-Luis M, Pec MK et al (2017) Functional effects of proinflammatory factors present in Sjogren’s syndrome salivary microenvironment in an in vitro model of human salivary gland. Sci Rep 7. https://doi.org/10.1038/s41598-017-12282-x.
Henskens YMC, van der Weijden FA, van den Keijbus PAM et al (1996) Effect of periodontal treatment on the protein composition of whole and parotid saliva. J Periodontol 67:205–212. https://doi.org/10.1902/JOP.1996.67.3.205. (PMID: 10.1902/JOP.1996.67.3.2058708950)
Ahmad P, Hussain A, Carrasco-Labra A, Siqueira WL (2022) Salivary proteins as dental caries biomarkers: a systematic review. Caries Res 56:385–398. https://doi.org/10.1159/000526942. (PMID: 10.1159/00052694236116431)
Mohammadi Z (2008) Chlorhexidine gluconate, its properties and applications in endodontics. Iran Edond J 2:113–125.
Kuo ML, Lamster IB, Hasselgren G (1998) Host mediators in endodontic exudates. II. Changes in concentration with sequential sampling. J Endod 24:636–640. https://doi.org/10.1016/S0099-2399(98)80144-1. (PMID: 10.1016/S0099-2399(98)80144-110023242)
Pezelj-Ribarić S, Magašić K, Prpić J et al (2007) Tumor necrosis factor-alpha in peripical tissue exudates of teeth with apical periodontitis. Mediators Inflamm 2007. https://doi.org/10.1155/2007/69416.
Shimauchi H, Miki Y, Takayama S-I et al (1996) Development of a quantitative sampling method for periapical exudates from human root canals. J Endod 22:612–615. https://doi.org/10.1016/s0099-2399(96)80032-x. (PMID: 10.1016/s0099-2399(96)80032-x9198418)
Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469. https://doi.org/10.1146/annurev.physiol.67.041703.084745. (PMID: 10.1146/annurev.physiol.67.041703.08474515709965)
Sneyd J, Rugis J, Su S et al (2022) Simulation of calcium dynamics in realistic three-dimensional domains. Biomolecules 12. https://doi.org/10.3390/biom12101455.
Sneyd J, Crampin E, Yule D (2014) Multiscale modelling of saliva secretion. Math Biosci 257:69–79. https://doi.org/10.1016/J.MBS.2014.06.017. (PMID: 10.1016/J.MBS.2014.06.017250147704252247)
Roussa E (2011) Channels and transporters in salivary glands. Cell Tissue Res 343:263–287. https://doi.org/10.1007/S00441-010-1089-Y. (PMID: 10.1007/S00441-010-1089-Y21120532)
Patterson K, Catalán MA, Melvin JE et al (2012) A quantitative analysis of electrolyte exchange in the salivary duct. Am J Physiol Gastrointest Liver Physiol 303:1153–1163. https://doi.org/10.1152/ajpgi.00364.2011.-A. (PMID: 10.1152/ajpgi.00364.2011.-A)
Homann V, Kinne-Saffran E, Arnold WH et al (2006) Calcium transport in human salivary glands: a proposed model of calcium secretion into saliva. Histochem Cell Biol 125:583–591. https://doi.org/10.1007/s00418-005-0100-2. (PMID: 10.1007/s00418-005-0100-216270201)
Ikuta K, Segawa H, Hanazaki A et al (2019) Systemic network for dietary inorganic phosphate adaptation among three organs. Pflugers Arch 471:123–136. https://doi.org/10.1007/s00424-018-2242-9. (PMID: 10.1007/s00424-018-2242-930523405)
Miozza VA, Sánchez GA, Busch L (2012) Influence of experimental periodontitis on cholinergic stimulation of K + release in rat parotid glands. Auton Neurosci 169:43–48. https://doi.org/10.1016/j.autneu.2012.03.004. (PMID: 10.1016/j.autneu.2012.03.00422513211)
Carpenter GH, Osailan SM, Correia P et al (2007) Rat salivary gland ligation causes reversible secretory hypofunction. Acta Physiol 189:241–249. https://doi.org/10.1111/J.1365-201X.2006.01662.X. (PMID: 10.1111/J.1365-201X.2006.01662.X)
Correia PN, Carpenter GH, Osailan SM et al (2008) Acute salivary gland hypofunction in the duct ligation model in the absence of inflammation. Oral Dis 14:520–528. https://doi.org/10.1111/j.1601-0825.2007.01413.x. (PMID: 10.1111/j.1601-0825.2007.01413.x182214572592348)
Brown AE, Rogers JD, Haase EM et al (1999) Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. J Clin Microbiol 37:4081–4085. https://doi.org/10.1128/JCM.37.12.4081-4085.1999. (PMID: 10.1128/JCM.37.12.4081-4085.19991056593585885)
Scannapieco FA (1994) Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5:203–248. https://doi.org/10.1177/10454411940050030201. (PMID: 10.1177/104544119400500302017703323)
Larsen MJ, Fejerkov O (1989) Chemical and structural challenges in remineralization of dental enamel lesions. Scand J Dent Res 97:285–296. https://doi.org/10.1111/J.16000722.1989.TB01615.X. (PMID: 10.1111/J.16000722.1989.TB01615.X2799268)
Gaffar A, Blake-Haskins J, Mellberg J (1993) In vivo studies with a dicalcium phosphate dihydrate/MFP system for caries prevention. Int Dent J 43:81–88. (PMID: 8478133)
White DJ (1997) Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits. Eur J Oral Sci 105:508–522. https://doi.org/10.1111/J.1600-0722.1997.TB00238.X. (PMID: 10.1111/J.1600-0722.1997.TB00238.X9395117)
Zalewska A, Knä M, Maciejczyk M et al (2015) Antioxidant profile, carbonyl and lipid oxidation markers in the parotid and submandibular glands of rats in different periods of streptozotocin induced diabetes. Arch Oral Biol 60:1375–1386. https://doi.org/10.1016/j.archoralbio.2015.06.012. (PMID: 10.1016/j.archoralbio.2015.06.01226143097)
Peralta I, Marrassini C, Arcos MLB, et al (2019) Larrea divaricata Cav. aqueous extract and nordihydroguariaretic acid modulate oxidative stress in submandibular glands of diabetic rats: a buccal protective in diabetes. BMC Complement Altern Med 19. https://doi.org/10.1186/s12906-019-2636-z.
Prieto AKC, Gomes-Filho JE, Azuma MM et al (2017) Influence of apical periodontitis on stress oxidative parameters in diabetic rats. J Endod 43:1651–1656. https://doi.org/10.1016/j.joen.2017.05.014. (PMID: 10.1016/j.joen.2017.05.01428756960)
Wu YH, Yao QT, Liu SH et al (2021) Effect of ischemic preconditioning on radiation damage to the submandibular gland in rats. Eur J Oral Sci 129:12785–12785. https://doi.org/10.1111/EOS.12785. (PMID: 10.1111/EOS.12785)
Lorenzen I, Mullen L, Bekeschus S, Hanschmann EM (2017) Redox regulation of inflammatory processes is enzymatically controlled. Oxid Med Cell Longev 2017. https://doi.org/10.1155/2017/8459402.
Bhattarai KR, Junjappa R, Handigund M et al (2018) The imprint of salivary secretion in autoimmune disorders and related pathological conditions. Autoimmun Rev 17:376–390. https://doi.org/10.1016/j.autrev.2017.11.031. (PMID: 10.1016/j.autrev.2017.11.03129428807)
Nater UM, Rohleder N (2009) Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 34:486–496. https://doi.org/10.1016/j.psyneuen.2009.01.014. (PMID: 10.1016/j.psyneuen.2009.01.01419249160)
Inchingolo F, Marrelli M, Annibali S et al (2013) Influence of endodontic treatment on systemic oxidative stress. Int J Med Sci 11:1–6. https://doi.org/10.7150/ijms.6663. (PMID: 10.7150/ijms.6663243962803880985)
Frazão DR, Santos Mendes PF, Baia-da-Silva DC, et al (2023) Modulation of blood redox status by the progression of induced apical periodontitis in rats. Front Physiol 14. https://doi.org/10.3389/fphys.2023.1214990.
Gomes C, Martinho FC, Barbosa DS et al (2018) Increased root canal endotoxin levels are associated with chronic apical periodontitis, increased oxidative and nitrosative stress, major depression, severity of depression, and a lowered quality of life. Mol Neurobiol 55:2814–2827. https://doi.org/10.1007/S12035-017-0545-Z. (PMID: 10.1007/S12035-017-0545-Z28455694)
Wolle CFB, Zollmann LA, Bairros PO et al (2013) Outcome of periapical lesions in a rat model of type 2 diabetes: refractoriness to systemic antioxidant therapy. J Endod 39:643–647. https://doi.org/10.1016/j.joen.2012.12.030. (PMID: 10.1016/j.joen.2012.12.03023611383)
Tibúrcio-Machado C dos S, Lang PM, Campos MM, et al (2021) High-fat diet effect on periapical lesions and hepatic enzymatic antioxidant in rats. Life Sci 264. https://doi.org/10.1016/J.LFS.2020.118637.
Kang WS, Jung WK, Bin PS et al (2021) Gemigliptin suppresses salivary dysfunction in streptozotocin-induced diabetic rats. Biomed Pharmacother 137:111297. https://doi.org/10.1016/j.biopha.2021.111297. (PMID: 10.1016/j.biopha.2021.11129733493968)
Fiais GA, Ferreira DS de B, de Freitas RN et al (2023) Assessment of the toxic effects of levetiracetam on biochemical, functional, and redox parameters of salivary glands in male Wistar rats. Toxicology 496. https://doi.org/10.1016/J.TOX.2023.153615.
Cheng R, Feng Y, Zhang R et al (2018) The extent of pyroptosis varies in different stages of apical periodontitis. Biochim Biophys Acta Mol Basis Dis 1864:226–237. https://doi.org/10.1016/j.bbadis.2017.10.025. (PMID: 10.1016/j.bbadis.2017.10.02529066283)
Gomes-Filho JE, Wayama MT, Dornelles RCM et al (2015) Effect of raloxifene on periapical lesions in ovariectomized rats. J Endod 41:671–675. https://doi.org/10.1016/j.joen.2014.11.027. (PMID: 10.1016/j.joen.2014.11.02725576209)
Paula-Silva FWG, Ribeiro-Santos FR, Petean IBF et al (2020) Root canal contamination or exposure to lipopolysaccharide differentially modulate prostaglandin E 2 and leukotriene B 4 signaling in apical periodontitis. J Appl Oral Sci 28:1–9. https://doi.org/10.1590/1678-7757-2019-0699. (PMID: 10.1590/1678-7757-2019-0699)
Minczykowski A, Woszczyk M, Szczepanik A et al (2001) Hydrogen peroxide and superoxide anion production by polymorphonuclear neutrophils in patients with chronic periapical granuloma, before and after surgical treatment. Clin Oral Investig 5:6–10. https://doi.org/10.1007/S007840000095. (PMID: 10.1007/S00784000009511355101)
Guerrero-Bobadilla C, Yáñez-Sánchez I, Franco-Ávila T et al (2020) Reduction of NrF2 as coadjuvant during the development of persistent periapical lesions. Med Oral Patol Oral Cir Bucal 28:404–411. https://doi.org/10.4317/medoral.25815. (PMID: 10.4317/medoral.25815)
Marton IJ, Balla G, Hegedus C et al (1993) The role of reactive oxygen intermediates in the pathogenesis of chronic apical periodontitis. Oral Microbiol Immunol 8:254–257. https://doi.org/10.1111/j.1399-302x.1993.tb00570.x. (PMID: 10.1111/j.1399-302x.1993.tb00570.x8247615)
Zalewska A, Joanna K, Sara Z et al (2021) N-Acetylcysteine supplementation did not reverse mitochondrial oxidative stress, apoptosis, and inflammation in the salivary glands of hyperglycemic rats. Nutr Diabetes 11. https://doi.org/10.1038/s41387-021-00177-w.
Chen S, Wang Y, Zhang C, Yang Z (2020) Decreased basal and stimulated salivary parameters by histopathological lesions and secretory dysfunction of parotid and submandibular glands in rats with type 2 diabetes. Exp Ther Med 19:2707–2719. https://doi.org/10.3892/etm.2020.8505. (PMID: 10.3892/etm.2020.8505322567537086285)
Mostafa OAA, Ibrahim F, Borai E (2023) Protective effects of hesperidin in cyclophosphamide-induced parotid toxicity in rats. Sci Rep 13:158. https://doi.org/10.1038/s41598-022-26881-w. (PMID: 10.1038/s41598-022-26881-w365999029812991)
Nair PN (2000) (1997) Apical periodontitis: A dynamic encounter between root canal infection and host response. Periodontol 13:121–148. https://doi.org/10.1111/j.1600-0757.1997.tb00098.x. (PMID: 10.1111/j.1600-0757.1997.tb00098.x)
Rechenberg DK, Held U, Burgstaller JM et al (2016) Pain levels and typical symptoms of acute endodontic infections: a prospective, observational study. BMC Oral Health 16:61. https://doi.org/10.1186/s12903-016-0222-z. (PMID: 10.1186/s12903-016-0222-z272344324884369)
معلومات مُعتمدة: 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 2022-5529-4 Pro-Rectory of Research of Unesp; 2022/11532-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
فهرسة مساهمة: Keywords: Apical periodontitis; Oxidative stress; Saliva; Salivary glands; Salivary proteins and peptides
المشرفين على المادة: 0 (Tumor Necrosis Factor-alpha)
0 (Antioxidants)
تواريخ الأحداث: Date Created: 20240217 Date Completed: 20240219 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1007/s00784-024-05540-6
PMID: 38366095
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-3771
DOI:10.1007/s00784-024-05540-6