دورية أكاديمية

Enhancing systematic tolerance in Bermuda grass (Cynodon dactylon L.) through amplified alkB gene expression and bacterial-driven hydrocarbon degradation.

التفاصيل البيبلوغرافية
العنوان: Enhancing systematic tolerance in Bermuda grass (Cynodon dactylon L.) through amplified alkB gene expression and bacterial-driven hydrocarbon degradation.
المؤلفون: Iqbal S; Department of Environmental Science, The Women University Multan, Multan, Pakistan., Ummara U; Department of Botany, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Bahawalpur, Pakistan., Noreen S; Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan., Akhter MS; Institute of Botany, Bahauddin Zakariya University, Multan, Pakistan., Jaleel F; Department of Chemistry, The Islamia University of Bahawalpur, Rahim Yar Khan Campus, Bahawalpur, Pakistan., Jabeen S; Department of Environmental Science, The Women University Multan, Multan, Pakistan., Naz N; Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan., Wahid A; Department of Environmental Science, Bahauddin Zakariya University, Multan, Pakistan., Alotaibi MO; Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia., Nour MM; Nurseries Department, Habitat Regeneration and Landscaping, Wildlife and Natural Heritage, Royal Commission for AlUla, Saudi Arabia., Al-Qthanin RN; Prince Sultan Bin-Abdul-Aziz Center for Environment and Tourism Studies and Researches, King Khalid University, P.O. Box 960, 61421, Abha, Saudi Arabia.; Biology Department, College of Sciences, King Khalid University, Abha, Saudi Arabia., Aqeel M; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, China. asghar16@lzu.edu.cn.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Mar; Vol. 31 (13), pp. 19871-19885. Date of Electronic Publication: 2024 Feb 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Petroleum*/analysis , Agricultural Inoculants*/metabolism , Soil Pollutants*/analysis, Cynodon ; Hydrogen Peroxide/metabolism ; Biodegradation, Environmental ; Hydrocarbons/metabolism ; Bacteria/metabolism ; Soil ; Gene Expression
مستخلص: This study aimed to access the impact of soil polluted with petroleum (5, 10 g petroleum kg -1 soil) on Bermuda grass (Cynodon dactylon L.) with and without applied bacterial inoculants (Arthrobacter oxydans ITRH49 and Pseudomonas sp. MixRI75). Both soil and seed were given bacterial inoculation. The evaluated morphological parameters of Bermuda grass were fresh and dry weight. The results demonstrated that applied bacterial inoculants enhanced 5.4%, 20%, 28% and 6.4%, 21%, and 29% shoot and root fresh/dry weights in Bermuda grass under controlled environment. The biochemical analysis of shoot and root was affected deleteriously by the 10 g petroleum kg -1 soil pollution. Microbial inoculants enhanced the activities of enzymatic (catalase, peroxidase, glutathione reductase, ascorbate peroxidase, superoxide dismutase) and non-enzymatic (ɑ-tocopherols, proline, reduced glutathione, ascorbic acid) antioxidant to mitigate the toxic effects of ROS (H 2 O 2 ) under hydrocarbon stressed condition. The maximum hydrocarbon degradation (75%) was recorded by Bermuda grass at 5 g petroleum kg -1 soil contamination. Moreover, bacterial persistence and alkane hydroxylase gene (alkB) abundance and expression were observed more in the root interior than in the rhizosphere and shoot interior of Bermuda grass. Subsequently, the microbe used a biological tool to propose that the application of plant growth-promoting bacteria would be the most favorable choice in petroleum hydrocarbon polluted soil to conquer the abiotic stress in plants and the effective removal of polyaromatic hydrocarbons in polluted soil.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. (PMID: 672766010.1016/S0076-6879(84)05016-3)
Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47. (PMID: 2256769310.1080/15226514.2011.552928)
Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM (2013) Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int Biodeterior Biodegrad 85:331–336. (PMID: 10.1016/j.ibiod.2013.08.022)
Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242. (PMID: 2507861510.1016/j.chemosphere.2014.06.078)
Agnello AC, Bagard M, Van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563:693–703. (PMID: 2652499410.1016/j.scitotenv.2015.10.061)
Ahammed GJ, Yuan H-L, Ogweno JO, Zhou Y-H, Xia X-J, Mao W-H, Shi K, Yu J-Q (2012) Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere 86:546–555. (PMID: 2211927910.1016/j.chemosphere.2011.10.038)
Ahmad F, Iqbal S, Anwar S, Afzal M, Islam E, Mustafa T, Khan QM (2012) Enhanced remediation of chlorpyrifos from soil using ryegrass (Lolliummultiflorum) and chlorpyrifos-degrading bacterium Bacillus pumilus C2A1. J Hazard Mater 237:110–115. (PMID: 2295926610.1016/j.jhazmat.2012.08.006)
Akhter MS, Noreen S, Ummara U, Aqeel M, Saleem N, Ahmed MM, Mahmood S, Athar H-U-R, Alyemeni MN, Kaushik P, Ahmad P (2022) Silicon-induced mitigation of NaCl stress in barley (Hordeum vulgare L.), associated with enhanced enzymatic and non-enzymatic antioxidant activities. Plants 11:2379. (PMID: 36145782950321710.3390/plants11182379)
Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Prod 52:617–626. (PMID: 10.1016/j.indcrop.2013.11.033)
Ali S, Glick BR (2019) Plant–bacterial interactions in management of plant growth under abiotic stresses. New Future Dev Microb Biotechnol Bioeng. In: Singh JS (ed) Elsevier: Amsterdam, The Netherlands, pp 21–45.
Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS One 9:e111208. (PMID: 25360680421598310.1371/journal.pone.0111208)
Balseiro-Romero M, Gkorezis P, Kidd PS, Van Hamme J, Weyens N, Monterroso C, Vangronsveld J (2017) Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinusluteus development for potential application in phytoremediation. Sci Total Environ 581:676–688. (PMID: 2806930510.1016/j.scitotenv.2016.12.180)
Baker H, Frank O, DeAngelis B, Feingold S (1980) Plasma tocopherol in man at various times after ingesting free or acetylated tocopherol. Nutr Rep Int 21:531–536.
Bashandy SR, Abd-Alla MH, Dawood MF (2020) Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Appl Soil Ecol 154:103654. (PMID: 10.1016/j.apsoil.2020.103654)
Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. (PMID: 10.1007/BF00018060)
Cela J, Tweed JK, Sivakumaran A, Lee MR, Mur LA, Munné-Bosch S (2018) An altered tocopherol composition in chloroplasts reduces plant resistance to Botrytis cinerea. Plant Physiol Biochem 127:200–210. (PMID: 2960917610.1016/j.plaphy.2018.03.033)
Choudhury AR, Trivedi P, Madhaiyan M, Choi J, Choi W, Park J-H, Walitang DI, Sa T (2023) ACC deaminase producing endophytic bacteria enhances cell viability of rice (Oryza sativa L.) under salt stress by regulating ethylene emission pathway. Environ Exp Bot 213:105411.
Cui X, Cao X, Xue W, Xu L, Cui Z, Zhao R, Ni S-Q (2023) Integrative effects of microbial inoculation and amendments on improved crop safety in industrial soils co-contaminated with organic and inorganic pollutants. Sci Total Environ 873:162202. (PMID: 3677516210.1016/j.scitotenv.2023.162202)
Fahad S, Sonmez O, Saud S, Wang D, Wu C, Adnan M, Turan V (2021) Plant growth regulators for climate-smart agriculture. CRC Press. (PMID: 10.1201/9781003109013)
Fatima K, Imran A, Amin I, Khan Q, Afzal M (2016) Plant species affect colonization patterns and metabolic activity of associated endophytes during phytoremediation of crude oil-contaminated soil. Environ Sci Pollut Res 23:6188–6196. (PMID: 10.1007/s11356-015-5845-0)
Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. (PMID: 2409525610.1016/j.micres.2013.09.009)
Glick BR (2015) Beneficial plant-bacterial interactions. Springer. (PMID: 10.1007/978-3-319-13921-0)
Guan C, Fu W, Zhang X, Li Z, Zhu Y, Chen F, Ji J, Wang G, Gao X (2023) Enhanced phytoremediation efficiency of PHE-contaminated soil by rape (Brassica napus L.) assisted with PHE-degradable PGPR through modulating rhizobacterial communities. Ind Crops Prod 202:117057. (PMID: 10.1016/j.indcrop.2023.117057)
Guarino C, Marziano M, Tartaglia M, Prigioniero A, Postiglione A, Scarano P, Sciarrillo R (2020) Poaceae with PGPR bacteria and arbuscular mycorrhizae partnerships as a model system for plant microbiome manipulation for phytoremediation of petroleum hydrocarbons contaminated agricultural soils. Agronomy 10:547. (PMID: 10.3390/agronomy10040547)
Guo J (2006) Laboratory manual of plant physiology. Higher Education Press, Beijing, pp 210–228.
Guo S, Liu X, Tang J (2022) Enhanced degradation of petroleum hydrocarbons by immobilizing multiple bacteria on wheat bran biochar and its effect on greenhouse gas emission in saline-alkali soil. Chemosphere 286:131663. (PMID: 3437135710.1016/j.chemosphere.2021.131663)
Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, Liyanage C, Kolivabandara PA, Rinklebe J, Lam SS (2021) Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review. J Hazard Mater 416:125702.
Igamberdiev AU, Seregelyes C, Manac N, Hill RD (2004) NADH-dependent metabolism of nitric oxide in alfalfa root cultures expressing barley hemoglobin. Planta 219:95–102. (PMID: 1474021410.1007/s00425-003-1192-3)
Ijaz A, Imran A, ulHaq MA, Khan QM, Afzal M (2016) Phytoremediation: recent advances in plant-endophytic synergistic interactions. Plant Soil 405:179–195. (PMID: 10.1007/s11104-015-2606-2)
Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410. (PMID: 1243203210.1093/jxb/erf090)
Kapoor D, Singh MP, Kaur S, Bhardwaj R, Zheng B, Sharma A (2019) Modulation of the functional components of growth, photosynthesis, and anti-oxidant stress markers in cadmium exposed Brassica juncea L. Plants 8:260. (PMID: 31370349672413010.3390/plants8080260)
Khan S, Afzal M, Iqbal S, Khan QM (2013) Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 90:1317–1332. (PMID: 2305820110.1016/j.chemosphere.2012.09.045)
Khan MAI, Biswas B, Smith E, Naidu R, Megharaj M (2018) Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil-a review. Chemosphere 212:755–767. (PMID: 3017984010.1016/j.chemosphere.2018.08.094)
Krzyszczak A, Dybowski M, Jośko I, Kusiak M, Sikora M, Czech B (2022) The antioxidant defense responses of Hordeum vulgare L. to polycyclic aromatic hydrocarbons and their derivatives in biochar-amended soil. Environ Pollut 294:118664. (PMID: 3490252610.1016/j.envpol.2021.118664)
Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM (2018) Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Sci Total Environ 618:347–356. (PMID: 2913200210.1016/j.scitotenv.2017.10.334)
Li X, Peng D, Zhang Y, Ju D, Guan C (2021) Achromobacter sp. PHED2 enhances the phenanthrene degradation and stress tolerance in maize involving the participation of salicylic acid. Environ Technol Innov 21:101365. (PMID: 10.1016/j.eti.2021.101365)
Li X, Ren Q, Liao C, Wang Q, Ren M, Zhang M, Qian X, Yang S, Hu H, Wang M (2023) Plant-microbe interactions in wheat to deal with abiotic stress. Abiotic Stresses Wheat. Mohd. In: Kamran Khan et al (ed) Academic Press: 125 London Wall, London EC2Y 5AS, United Kingdom, pp 375–391.
Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z (2021) Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Loliumperenne exposed to hydrocarbons. Ecotoxicol Environ Saf 217:112252. (PMID: 3393077210.1016/j.ecoenv.2021.112252)
Maurya A, Sharma D, Partap M, Kumar R, Bhargava B (2023) Microbially-assisted phytoremediation toward air pollutants: current trends and future directions. Environ Technol Innov 31:103140.
Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172. (PMID: 28232845529901410.3389/fpls.2017.00172)
Miao R, Guo M, Zhao X, Gong Z, Jia C, Li X, Zhuang J (2020) Response of soil bacterial communities to polycyclic aromatic hydrocarbons during the phyto-microbial remediation of a contaminated soil. Chemosphere 261:127779. (PMID: 3273624910.1016/j.chemosphere.2020.127779)
Moreno-Galván AE, Cortés-Patiño S, Romero-Perdomo F, Uribe-Vélez D, Bashan Y, Bonilla RR (2020) Proline accumulation and glutathione reductase activity induced by drought-tolerant rhizobacteria as potential mechanisms to alleviate drought stress in Guinea grass. App Soil Eco 147:103367. (PMID: 10.1016/j.apsoil.2019.103367)
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880.
Navarro-Torre S, Rodríguez-Llorente ID, Pajuelo E, Mateos-Naranjo E, Redondo-Gómez S, Mesa-Marín J (2023) Role of bacterial endophytes in plant stress tolerance: current research and future outlook. Microb Endophy Plant Growth. In: Solanki MK et al (eds) Academic Press: 125 London Wall, London EC2Y 5AS, United Kingdom, pp 35–49.
Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134. (PMID: 1729315610.1016/j.tplants.2007.01.005)
Noctor G, Lelarge-Trouverie C, Mhamdi A (2015) The metabolomics of oxidative stress. Phytochemistry 112:33–53. (PMID: 2530639810.1016/j.phytochem.2014.09.002)
Pandita D (2022) Reactive oxygen and nitrogen species: antioxidant defense studies in plants. In: Aftab, Roychoudhury (eds) Plant Perspectives to Global Climate Changes, Academic Press: 125 London Wall, London EC2Y 5AS, United Kingdom, pp 355–371.
Ratnaningsih HR, Noviana Z, Dewi TK, Loekito S, Wiyono S, Gafur A, Antonius S (2023) IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon 9(6): e16306.
Rehman A, Khalil SK (2018) Effect of exogenous application of salicylic acid, potassium nitrate and methanol on canola growth and phenology under different moisture regimes. Sarhad J Agri 34:781–789.
Saeed M, Ilyas N, Bibi F, Jayachandran K, Dattamudi S, Govarthanan M (2021) Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. Environ Pollut 292:118343.
Sergiev I, Alexieva V, Karanov E (1997) Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants. Compt Rend Acad Bulg Sci 51:121–124.
Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticumaestivum L.). PloS one 11:e0155026. (PMID: 27322827491391310.1371/journal.pone.0155026)
Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticumaestivum L.) plant. Ecol Eng 116:163–173. (PMID: 10.1016/j.ecoleng.2017.12.033)
Singha LP, Pandey P (2017) Glutathione and glutathione-S-transferase activity in Jatropha curcas in association with pyrene degrader Pseudomonas aeruginosa PDB1 in rhizosphere, for alleviation of stress induced by polyaromatic hydrocarbon for effective rhizoremediation. Ecol Eng 102:422–432. (PMID: 10.1016/j.ecoleng.2017.02.061)
Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci. 170:274–282.
Song X, Li C, Chen W (2022) Phytoremediation potential of Bermuda grass (Cynodondactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicol Environ Saf 234:113389. (PMID: 3527219410.1016/j.ecoenv.2022.113389)
Speight JG (2011) Chapter 12–Petrochemicals. In: Speight JG (ed) Handbook of Industrial Hydrocarbon Processes. Gulf Professional Publishing, Boston, pp 429–466.
Sun J-L, Zeng H, Ni H-G (2013) Halogenated polycyclic aromatic hydrocarbons in the environment. Chemosphere 90:1751–1759. (PMID: 2318211210.1016/j.chemosphere.2012.10.094)
Sun L, Zhu G, Liao X (2018) Enhanced arsenic uptake and polycyclic aromatic hydrocarbon (PAH)-dissipation using Pterisvittata L. and a PAH-degrading bacterium. Sci Total Environ 624:683–690. (PMID: 2927283710.1016/j.scitotenv.2017.12.169)
Tariq M, Shah AA, Yasin NA, Ahmad A, Rizwan M (2021) Enhanced performance of Bacillus megaterium OSR-3 in combination with putrescine ameliorated hydrocarbon stress in Nicotiana tabacum. Int J Phytoremediation 23:119–129. (PMID: 3275531610.1080/15226514.2020.1801572)
Ummara U, Noreen S, Afzal M, Ahmad P (2021) Bacterial bioaugmentation enhances hydrocarbon degradation, plant colonization and gene expression in diesel-contaminated soil. Physiol Plant 173:58–66. (PMID: 32691441)
Ummara U, Noreen S, Afzal M, Zafar ZU, Akhter MS, Iqbal S, Hefft DI, Kazi M, Ahmad P (2022) Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. Chemosphere 290:133327. (PMID: 3492927410.1016/j.chemosphere.2021.133327)
Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. (PMID: 1721646210.1007/s00253-006-0748-0)
Wu M, Yan Y, Wang Y, Mao Q, Fu Y, Peng X, Yang Z, Ren J, Liu A, Chen S (2021) Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctoniasolani in watermelon by alleviating oxidative stress. Biol Control 152:104433. (PMID: 10.1016/j.biocontrol.2020.104433)
Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res 22:598–608. (PMID: 10.1007/s11356-014-3396-4)
Yousaf S, Ripka K, Reichenauer T, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401. (PMID: 2052214810.1111/j.1365-2672.2010.04768.x)
Yousaf U, Khan AHA, Farooqi A, Muhammad YS, Barros R, Tamayo-Ramos JA, Iqbal M, Yousaf S (2022) Interactive effect of biochar and compost with Poaceae and Fabaceae plants on remediation of total petroleum hydrocarbons in crude oil contaminated soil. Chemosphere 286:131782. (PMID: 3437582510.1016/j.chemosphere.2021.131782)
Zhang W, Zhang F, Raziuddin R, Gong H, Yang Z, Lu L, Ye Q, Zhou W (2008) Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J Plant Growth Regul 27:159–169. (PMID: 10.1007/s00344-008-9042-y)
Zhou W, Leul M (1999) Uniconazole-induced tolerance of rape plants to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul 27:99–104. (PMID: 10.1023/A:1006165603300)
معلومات مُعتمدة: PNURSP2024R101 Princess Nourah Bint Abdulrahman University
فهرسة مساهمة: Keywords: Arthrobacter oxydans ITRH49; Pseudomonas sp. MixRI75; alkB genes; Bermuda grass; Hydrocarbons; Phytoremediation
المشرفين على المادة: BBX060AN9V (Hydrogen Peroxide)
0 (Hydrocarbons)
0 (Petroleum)
0 (Soil)
0 (Soil Pollutants)
تواريخ الأحداث: Date Created: 20240217 Date Completed: 20240313 Latest Revision: 20240604
رمز التحديث: 20240604
DOI: 10.1007/s11356-024-32326-w
PMID: 38368297
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-32326-w