دورية أكاديمية

Neodymium adsorption from aqueous solution by β-cyclodextrin nanosponges and a polymer valorized from potato peels waste: experiments and conventional and statistical physics interpretations.

التفاصيل البيبلوغرافية
العنوان: Neodymium adsorption from aqueous solution by β-cyclodextrin nanosponges and a polymer valorized from potato peels waste: experiments and conventional and statistical physics interpretations.
المؤلفون: Jemli S; Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia.; Department of Biology, Faculty of Sciences of Sfax, University of Sfax, Road of Soukra Km 3.5, 3000, Sfax, Tunisia., Vieira Y; Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil., Dotto GL; Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil. guilherme_dotto@yahoo.com.br., Rossatto DL; Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil., Amara FB; Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia., Chamtouri F; Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia., Bejar S; Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, University of Sfax, PO Box 1177, 3018, Sfax, Tunisia., Ramos CG; Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlantico, Colombia., Silva LFO; Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlantico, Colombia., Khan MR; Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia., Manoharadas S; Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia., Dos Reis GS; Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umea, Sweden.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Mar; Vol. 31 (13), pp. 19974-19985. Date of Electronic Publication: 2024 Feb 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Solanum tuberosum* , beta-Cyclodextrins*/chemistry, Neodymium ; Adsorption ; Polymers ; Water/chemistry ; Physics ; Kinetics
مستخلص: Using organic waste and residue streams to be turned into valuable and greener materials for various applications has proven an efficient and suitable strategy. In this work, two green materials (nanosponges and a polymer) were synthesized using potato peels and applied for the first time to adsorb and recover Neodymium (Nd 3+ ) from aqueous solutions. The recovery of Nd 3+ that belongs to the rare earth elements has attracted important interest due to its/their importance in several industrial and technological applications. The fine potato peel waste (FPPW) polymer presented an irregular shape and porous surface. At the same time, the β-cyclodextrin (β-CD) nanosponges had uniform distribution with regular and smooth shapes. β-CD nanosponges exhibited a much higher total carboxyl content (4.02 mmol g -1 ) than FPPW (2.50 mmol g -1 ), which could impact the Nd 3+ adsorption performance because carboxyl groups can interact with cations. The adsorption capacity increased with the increase of the pH, reaching its maximum at pHs 6-7 for β-CD nanosponges and 4-7 for FPPW polymer. The kinetic and equilibrium data were well-fitted by General order and Liu models. β-CD nanosponges attained adsorption capacity near 100 mg Nd per gram of adsorbent. Thermodynamic and statistical physical results corroborated that the adsorption mechanism was due to electrostatic interaction/complexation and that the carboxyl groups were important in the interactions. β-CD nanosponges (three cycles of use) were more effective than FPPW (one cycle of use) in the regeneration. Finally, β-CD nanosponges could be considered an eco-friendly adsorbent to recover Nd 3+ from aqueous matrices.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, Shafiq M, Yi H, Jilani G, Javed R, Horton R, Rui Y, Tsang DCW, Xing B (2019) Cryptic footprints of rare earth elements on natural resources and living organisms. Environ Int 127:785–800. https://doi.org/10.1016/j.envint.2019.03.022. (PMID: 10.1016/j.envint.2019.03.02231039528)
Asadollahzadeh M, Torkaman R, Torab-Mostaedi M (2021) Extraction and separation of rare earth elements by adsorption approaches: current status and future trends. Sep Purif Rev 50:417–444. (PMID: 10.1080/15422119.2020.1792930)
Barampouti EM, Christofi A, Malamis D, Mai S (2023) A sustainable approach to valorize potato peel waste towards biofuel production. Biomass Convers Biorefin 13:8197–8208. (PMID: 10.1007/s13399-021-01811-4)
Ben Amara F, Bouzid M, Sahnoun M, Ben Nasr Y, Jaouadi B, Bejar S, Jemli S (2022) Valorization of potato peels starch for efficient β-cyclodextrin production and purification through an eco-friendly process. Starch-Stärke 74:2200037. (PMID: 10.1002/star.202200037)
Chang R, Thoman Jr JW (2014) Chapter 17- Intermolecular forces. In: Physical chemistry for chemical sciences. University Science Books, pp 779–808.
Chodankar D, Vora A, Kanhed A (2022) β-cyclodextrin and its derivatives: application in wastewater treatment. Environ Sci Pollut Res 29:1585–1604.
Cavalcante EHM, Candido ICM, de Oliveira HP, Silveira KB, Álvares TVS, Lima EC, Thyrel M, Larsson SH, dos Reis GS (2022) 3-Aminopropyl-triethoxysilanefunctionalized Tannin-Rich grape biomass for the adsorption of methyl orange dye: synthesis, characterization, and the adsorption mechanism. ACS Omega 7:18997–19009. (PMID: 10.1021/acsomega.2c02101356945249178721)
Crini G, Fourmentin S, Fenyvesi É, Torri G, Fourmentin M, Morin-Crini N (2018) Cyclodextrins, from molecules to applications. Environ Chem Lett 16:1361–1375. https://doi.org/10.1007/s10311-018-0763-2. (PMID: 10.1007/s10311-018-0763-2)
Dhaouadi F, Sellaoui L, Chávez-González B, Reynel-Ávila HE, Diaz-Muñoz LL, Mendoza-Castillo DI, Bonilla-Petriciolet A, Lima EC, Tapia-Picazo JC, Lamine AB (2021a) Application of a heterogeneous physical model for the adsorption of Cd 2+ , Ni 2+ , Zn 2+ , and Cu 2+ ions on flamboyant pods functionalized with citric acid. Chem Eng J 417:127975. (PMID: 10.1016/j.cej.2020.127975)
Dhaouadi F, Sellaoui L, Hernández-Hernández LE, Bonilla-Petriciolet A, Mendoza-Castillo DI, Reynel-Ávila HE, González-Ponce HA, Taamalli S, Louis F, Lamine AB (2021b) Preparation of an avocado seed hydrochar and its application as heavy metal adsorbent: properties and advanced statistical physics modeling. Chem Eng J 419:129472. (PMID: 10.1016/j.cej.2021.129472)
de Vargas Brião G, da Silva M.G.C, Vieira MGA (2022) Reusable and efficient clay material for the fixed-bed neodymium recovery. Sustain Chem Pharm 25:100623. https://doi.org/10.1016/j.scp.2022.100623. (PMID: 10.1016/j.scp.2022.100623)
dos Reis GS, Schnorr CE, Dotto GL, Vieillar J, Netto MS, Silva LFO, De Brum IAS, Thyrel M, Lima EC, Lassi U (2023a) Wood waste–based functionalized natural hydrochar for the efective removal of Ce(III) ions from aqueous solution. Environ Sci Pollut Res 30:64067–64077. (PMID: 10.1007/s11356-023-26921-6)
dos Reis GS, Bergna D, Grimm A, Lima EC, Hu T, Naushad M, Lassi U (2023b) Lassi Preparation of highly porous nitrogen-doped biochar derived from birch tree wastes with superior dye removal performance. Colloids Surf A: Physicochem Eng Aspects 669: 131493. (PMID: 10.1016/j.colsurfa.2023.131493)
dos Reis GS, Dotto GL, Vieillard J, Oliveira MLS, Lütke SF, Silva LFO, Lima EC, Salau NPG, Lassi U (2023c) Uptake the rare earth elements Nd, Ce, and La by a commercial diatomite: kinetics, equilibrium, thermodynamic and adsorption mechanism. J Mol Liq 389:122862. (PMID: 10.1016/j.molliq.2023.122862)
dos Reis GS, Dotto GL, Vieillard J, Oliveira MLS, Lütke SF, Grimm A, Silva LFO, Lima EC, Naushad Mu, Lassi U (2023d) Nickel-aluminium layered double hydroxide as an efficient adsorbent to selectively recover praseodymium and samarium from phosphogypsum leachate. J Alloys Compd 960:170530. (PMID: 10.1016/j.jallcom.2023.170530)
dos Reis GS, Pinto D, Lima ÉC, Knani S, Grimm A, Silva LFO et al (2022) Lanthanum uptake from water using chitosan with different configurations. React Funct Polym 180:105395. (PMID: 10.1016/j.reactfunctpolym.2022.105395)
Dotto GL, Vieillard J, Pinto D, Lütke SF, Silva LFO, dos Reis GS, Lima EC, Franco DSP (2023) Selective adsorption of gadolinium from real leachate using a natural bentonite clay. J Environ Chem Eng 11:109748. (PMID: 10.1016/j.jece.2023.109748)
Dushyantha N, Batapola N, Ilankoon I, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K (2020) The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev 122:103521. (PMID: 10.1016/j.oregeorev.2020.103521)
El-Azazy M, El-Shafie AS, Issa AA, Al-Sulaiti M, Al-Yafie J, Shomar B, Al-Saad K (2019) Potato peels as an adsorbent for heavy metals from aqueous solutions: eco-structuring of a green adsorbent operating Plackett-Burman design. J Chem 2019:1–14. https://doi.org/10.1155/2019/4926240. (PMID: 10.1155/2019/4926240)
Feitoza US, Thue PS, Lima EC, dos Reis GS, Rabiee N, de Alencar WS, Mello BL, Dehmani Y, Rinklebe J, Dias SLP (2022) Use of biochar prepared from the Açaí Seed as adsorbent for the uptake of catechol from synthetic effluents. Molecules 27:7570. (PMID: 10.3390/molecules27217570363643979654046)
Firdaus M, Rhamdhani MA, Durandet Y, Rankin WJ, McGregor K (2016) Review of high-temperature recovery of rare earth (Nd/Dy) from magnet waste. J Sustain Metall 2:276–295. https://doi.org/10.1007/s40831-016-0045-9. (PMID: 10.1007/s40831-016-0045-9)
Freitas R, Costa S, Cardoso CE, Morais T, Moleiro P, Matias AC, Pereira AF, Machado J, Correia B, Pinheiro D (2020) Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. Chemosphere 244:125457. (PMID: 10.1016/j.chemosphere.2019.12545732050323)
Gonzalez-Hourcade M, dos Reis GS, Grimm A, Dinh VM, Lima EC, Larsson SH, Gentili FG (2022) Microalgae biomass as a sustainable precursor to produce nitrogen-doped biochar for efficient removal of emerging pollutants from aqueous media. J Clean Prod 348:131280. (PMID: 10.1016/j.jclepro.2022.131280)
Haque N, Hughes A, Lim S, Vernon C (2014) Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3:614–635. (PMID: 10.3390/resources3040614)
Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689. (PMID: 10.1016/j.jhazmat.2005.12.04316460877)
Javadian H, Taghavi M, Ruiz M, Tyagi I, Farsadrooh M, Sastre AM (2022) Adsorption of neodymium, terbium and dysprosium using a synthetic polymer-based magnetic adsorbent. J Rare Earths. https://doi.org/10.1016/j.jre.2022.08.021. (PMID: 10.1016/j.jre.2022.08.021)
Jemli S, Pinto D, Kanhounnon WG, Amara FB, Sellaoui L, Bonilla-Petriciolet A, Dhaouadi F, Ameri R, Silva LF, Bejar S (2023) Green β-cyclodextrin nanosponges for the efficient adsorption of light rare earth elements: Cerium and lanthanum. Chem Eng J 466:143108. (PMID: 10.1016/j.cej.2023.143108)
Li Y, Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M, Zhou Y (2020) Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 382:12104.
Li Y, Zhou Y, Zhou Y, Lei J, Pu S (2018) Cyclodextrin modified filter paper for removal of cationic dyes/Cu ions from aqueous solutions. Water Sci Technol 78:2553–2563. (PMID: 10.2166/wst.2019.00930767920)
Liu C, Shi K, Lyu K, Liu D, Wang X (2022) The toxicity of neodymium and genome-scale genetic screen of neodymium-sensitive gene deletion mutations in the yeast Saccharomyces cerevisiae, Environmental Science and Pollution. Research 29:41439–41454.
Liu Q, Zhou Y, Lu J, Zhou Y (2020) Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: a critical review. Chemosphere 241:125043. (PMID: 10.1016/j.chemosphere.2019.12504331683417)
Omodara L, Pitkäaho S, Turpeinen E-M, Saavalainen P, Oravisjärvi K, Keiski RL (2019) Recycling and substitution of light rare earth elements, cerium, lanthanum, neodymium, and praseodymium from end-of-life applications — a review. J Clean Prod 236:117573. https://doi.org/10.1016/j.jclepro.2019.07.048. (PMID: 10.1016/j.jclepro.2019.07.048)
Pavón S, Fortuny A, Coll MT, Sastre AM (2018) Neodymium recovery from NdFeB magnet wastes using Primene 81R•Cyanex 572 IL by solvent extraction. J Environ Manage 222:359–367. https://doi.org/10.1016/j.jenvman.2018.05.054. (PMID: 10.1016/j.jenvman.2018.05.05429870964)
Periyapperuma K, Sanchez-Cupido L, Pringle JM, Pozo-Gonzalo C (2021) Analysis of sustainable methods to recover neodymium. Sustain Chem 2:550–563. (PMID: 10.3390/suschem2030030)
Pinheiro RF, Grimm A, Oliveira MLS, Vieillard J, Silva LFO, De Brum IAS, Lima EC, Naushad M, Sellaoui L, Dotto GL, dos Reis GS (2023) Adsorptive behavior of the rare earth elements Ce and La on a soybean pod derived activated carbon: application in synthetic solutions, real leachate and mechanistic insights by statistical physics modeling. Chem Eng J 471:144484. (PMID: 10.1016/j.cej.2023.144484)
Rahman ML, Sarjadi MS, Arshad SE, Yusoff MM, Sarkar SM, Musta B (2019) Kenaf cellulose-based poly(amidoxime) ligand for adsorption of rare earth ions. Rare Met 38:259–269. https://doi.org/10.1007/s12598-018-1061-7. (PMID: 10.1007/s12598-018-1061-7)
Reisdörfer G, Bertuol D, Tanabe EH (2019) Recovery of neodymium from the magnets of hard disk drives using organic acids. Miner Eng 143:105938. https://doi.org/10.1016/j.mineng.2019.105938. (PMID: 10.1016/j.mineng.2019.105938)
Sellaoui L, Dotto GL, Pereira HA, Vieira Y, dos Reis GS, Oliveira MLS, Silva LFO, Khan MR, Manoharadas S, Godinho M, Fantinel LA, Aguzzoli C, Santos RKS (2023) Adsorptive properties of the pesticides 2,4-D, mecoprop, and dicamba on a pinus-based biochar: conventional and statistical physics evaluation. Chem Eng J 474:145564. (PMID: 10.1016/j.cej.2023.145564)
Sampaio SL, Petropoulos SA, Alexopoulos A, Heleno SA, Santos-Buelga C, Barros L, Ferreira IC (2020) Potato peels as sources of functional compounds for the food industry: a review. Trends Food Sci Technol 103:118–129. (PMID: 10.1016/j.tifs.2020.07.015)
Shtangeeva I, Niemelä M, Perämäki P (2022) Bioavailability and toxicity of bromine and neodymium for plants grown in soil and water. Environ Geochem Health 44:285–293. https://doi.org/10.1007/s10653-021-01034-6. (PMID: 10.1007/s10653-021-01034-6)
Smith YR, Bhattacharyya D, Willhard T, Misra M (2016) Adsorption of aqueous rare earth elements using carbon black derived from recycled tires. Chem Eng J 296:102–111. (PMID: 10.1016/j.cej.2016.03.082)
Tu Y-J, Johnston CT (2018) Rapid recovery of rare earth elements in industrial wastewater by CuFe2O4 synthesized from Cu sludge. J Rare Earths 36:513–520. https://doi.org/10.1016/j.jre.2017.11.009. (PMID: 10.1016/j.jre.2017.11.009)
Xu X, Zou J, Zhao X-R, Jiang X-Y, Jiao F-P, Yu J-G, Liu Q, Teng J (2019) Facile assembly of three-dimensional cylindrical egg white embedded graphene oxide composite with good reusability for aqueous adsorption of rare earth elements. Colloids Surf, A 570:127–140. https://doi.org/10.1016/j.colsurfa.2019.03.022. (PMID: 10.1016/j.colsurfa.2019.03.022)
Yoon H-S, Kim C-J, Chung K-W, Kim S-D, Lee J-Y, Kumar JR (2016) Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: Waste recycling strategies for permanent magnet processing. Hydrometallurgy 165:27–43. https://doi.org/10.1016/j.hydromet.2016.01.028. (PMID: 10.1016/j.hydromet.2016.01.028)
Zakeri Khatir M, Abdollahy M, Khalesi MR, Rezai B (2021) Selective separation of neodymium from synthetic wastewater by ion flotation. Sep Sci Technol 56:1802–1810. https://doi.org/10.1080/01496395.2020.1793779. (PMID: 10.1080/01496395.2020.1793779)
فهرسة مساهمة: Keywords: Hill model; Isotherm; Neodymium adsorption; Potato peels waste; β-Cyclodextrin
المشرفين على المادة: 2I87U3734A (Neodymium)
0 (Polymers)
0 (beta-Cyclodextrins)
059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20240217 Date Completed: 20240313 Latest Revision: 20240604
رمز التحديث: 20240604
DOI: 10.1007/s11356-024-32473-0
PMID: 38368300
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-32473-0