دورية أكاديمية

Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis.

التفاصيل البيبلوغرافية
العنوان: Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis.
المؤلفون: Gu B; Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany., Goldfuss B; Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany., Dickschat JS; Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 May 06; Vol. 63 (19), pp. e202401539. Date of Electronic Publication: 2024 Mar 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مواضيع طبية MeSH: Terpenes*/metabolism , Terpenes*/chemistry , Sesterterpenes*/chemistry , Sesterterpenes*/metabolism, Molecular Conformation ; Alkyl and Aryl Transferases/metabolism ; Alkyl and Aryl Transferases/chemistry ; Stereoisomerism
مستخلص: Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D 3 . All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
(© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
References: R. Croteau, P. T. Purkett, Arch. Biochem. Biophys. 1989, 271, 542–535.
F. Lynen, H. Eggerer, U. Henning, I. Kessel, Angew. Chem. 1958, 70, 738–742.
D. L. Nandi, J. W. Porter, Arch. Biochem. Biophys. 1964, 105, 7–19.
A. Tachibana, FEBS Lett. 1994, 341, 291–294.
A. Hou, J. S. Dickschat, Angew. Chem. 2020, 132, 20135–20140;.
Angew. Chem. Int. Ed. 2020, 59, 19961–19965.
H. Tao, L. Lauterbach, G. Bian, R. Chen, A. Hou, T. Mori, S. Cheng, B. Hu, L. Lu, X. Mu, M. Li, N. Adachi, M. Kawasaki, T. Moriya, T. Senda, X. Wang, Z. Deng, I. Abe, J. S. Dickschat, T. Liu, Nature 2022, 606, 414–419.
J. R. Hanson, Nat. Prod. Rep. 1986, 3, 123–132.
J. R. Hanson, Nat. Prod. Rep. 1992, 9, 481–489.
J. R. Hanson, Nat. Prod. Rep. 1996, 13, 529–535.
Y. Liu, L. Wang, J. H. Jung, S. Zhang, Nat. Prod. Rep. 2007, 24, 1401–1429.
L. Wang, B. Yang, X. P. Lin, X. F. Zhou, Y. Liu, Nat. Prod. Rep. 2013, 30, 455–473.
K. Li, K. R. Gustafson, Nat. Prod. Rep. 2021, 38, 1251–1281.
A. Minami, T. Ozaki, C. Liu, H. Oikawa, Nat. Prod. Rep. 2018, 35, 1330–1346.
R. Chiba, A. Minami, K. Gomi, H. Oikawa, Org. Lett. 2013, 15, 594–597.
Z. Quan, J. S. Dickschat, Org. Biomol. Chem. 2020, 18, 6072–6076.
Y. Matsuda, T. Mitsuhashi, Z. Quan, I. Abe, Org. Lett. 2015, 17, 4644–4647.
Y. Matsuda, T. Mitsuhashi, S. Lee, M. Hoshino, T. Mori, M. Okada, H. Zhang, F. Hayashi, M. Fujita, I. Abe, Angew. Chem. 2016, 128, 5879–5882;.
Angew. Chem. Int. Ed. 2016, 55, 5785–5788.
M. Okada, Y. Matsuda, T. Mitsuhashi, S. Hoshino, T. Mori, K. Nakagawa, Z. Quan, B. Qin, H. Zhang, F. Hayashi, H. Kawaide, I. Abe, J. Am. Chem. Soc. 2016, 138, 10011–10018.
Y. Ye, A. Minami, A. Mandi, C. Liu, T. Taniguchi, T. Kuzuyama, K. Monde, K. Gomi, H. Oikawa, J. Am. Chem. Soc. 2015, 137, 11846–11853.
T. Mitsuhashi, J. Rinkel, M. Okada, I. Abe, J. S. Dickschat, Chem. Eur. J. 2017, 23, 10053–10057.
K. Narita, H. Soto, A. Minami, K. Kudo, L. Gao, C. Liu, T. Ozaki, M. Kodama, X. Lei, T. Taniguchi, K. Monde, M. Yamazaki, M. Uchiyama, H. Oikawa, Org. Lett. 2017, 19, 6696–6699.
L. Gao, K. Narita, T. Ozaki, N. Kumakura, P. Gan, A. Minami, C. Liu, X. Lei, K. Shirasu, H. Oikawa, Tetrahedron Lett. 2018, 59, 1136–1139.
Z. Quan, J. S. Dickschat, Org. Lett. 2020, 22, 7552–7555.
J. Guo, Y. Cai, F. Cheng, C. Yang, W. Zhang, W. Yu, J. Yan, Z. Deng, K. Hong, Org. Lett. 2021, 23, 1525–1529.
Z. Quan, A. Hou, B. Goldfuss, J. S. Dickschat, Angew. Chem. 2022, 134, e202117273;.
Angew. Chem. Int. Ed. 2022, 61, e202117273.
L. Jiang, X. Zhang, Y. Sato, G. Zhu, A. Minami, W. Zhang, T. Ozaki, B. Zhu, Z. Wang, X. Wang, K. Lv, J. Zhang, Y. Wang, S. Gao, C. Liu, T. Hsiang, L. Zhang, H. Oikawa, X. Liu, Org. Lett. 2021, 23, 4645–465.
L. Jiang, H. Yang, X. Zhang, X. Li, K. Lv, W. Zhang, G. Zhu, C. Liu, Y. Wang, T. Hsiang, L. Zhang, X. Liu, Appl. Microbiol. Biotechnol. 2022, 106, 6047–6057.
Y. Qiao, Q. Xu, Z. Huang, X. Chen, X. Ren, W. Yuan, Z. Guan, P. Li, F. Li, C. Xiong, H. Zhu, C. Chen, L. Gu, Y. Zhou, C. Qi, Z. Hu, J. Liu, Y. Ye, Y. Zhang, Org. Chem. Front. 2022, 9, 5808–5818.
D. Li, M. Yang, R. Mu, S. Luo, Y. Chen, W. Li, A. Wang, K. Guo, Y. Liu, S. Li, Chin. Chem. Lett. 2023, 34, 107469.
J. Shao, Q.-W. Chen, H.-J. Lv, J. He, Z.-F. Liu, Y. N. Lu, H.-L. Liu, G.-D. Wang, Y. Wang, Org. Lett. 2017, 19, 1816–1819.
A. C. Huang, S. A. Kautsar, Y. J. Hong, M. H. Medema, A. D. Bond, D. J. Tantillo, A. Osbourn, Proc. Natl. Acad. Sci. USA 2017, 114, E6005–E6014.
A. C. Huang, Y. J. Hong, A. D. Bond, D. J. Tantillo, A. Osbourn, Angew. Chem. 2018, 130, 1305–1309;.
Angew. Chem. Int. Ed. 2018, 57, 1291–1295.
Y.-G. Chen, D.-S. Li, Y. Ling, Y.-C. Liu, Z.-L. Zuo, L.-S. Gan, S.-H. Luo, J. Hua, D.-Y. Chen, F. Xu, M. Li, K. Guo, Y. Liu, J. Gershenzon, S.-H. Li, Angew. Chem. 2021, 133, 25672–25680;.
Angew. Chem. Int. Ed. 2021, 60, 25468–25476.
Y. Yang, Y. Zhang, S. Zhang, Q. Chen, K. Ma, L. Bao, Y. Tao, W. Yin, G. Wang, H. Liu, J. Nat. Prod. 2018, 81, 1089–1092.
S.-H. Kim, W. Lu, M. K. Ahmadi, D. Montiel, M. A. Ternei, S. F. Brady, ACS Synth. Biol. 2019, 8, 109–118.
B. Gu, B. Goldfuss, J. S. Dickschat, Angew. Chem. 2023, 135, e202215688;.
Angew. Chem. Int. Ed. 2023, 62, e202215688.
H. Xu, G. Schnakenburg, B. Goldfuss, J. S. Dickschat, Angew. Chem. 2023, 135, e202306429;.
Angew. Chem. Int. Ed. 2023, 62, e202306429.
B. Gu, B. Goldfuss, G. Schnakenburg, J. S. Dickschat, Angew. Chem. 2023, 135, e202313789;.
Angew. Chem. Int. Ed. 2023, 62, e202313789.
S. Schulz, J. S. Dickschat, Nat. Prod. Rep. 2007, 24, 814–842.
M. H. Medema, E. Takano, R. Breitling, Mol. Biol. Evol. 2013, 30, 1218–1223.
2ndFind. http://biosyn.nih.go.jp/2ndfind/ (accessed Jan 25, 2023).
J. Rinkel, J. S. Dickschat, Org. Lett. 2019, 21, 2426–2429.
F. M. Hahn, A. P. Hurlburt, C. D. Poulter, J. Bacteriol. 1999, 181, 4499–4504.
J. W. Cornforth, R. H. Cornforth, G. Popjak, L. Yengoyan, J. Biol. Chem. 1966, 241, 3970–3987.
L. Lauterbach, J. Rinkel, J. S. Dickschat, Angew. Chem. 2018, 130, 8412–8415;.
Angew. Chem. Int. Ed. 2018, 57, 8280–8283.
P. Rabe, J. Rinkel, E. Dolja, T. Schmitz, B. Nubbemeyer, T. H. Luu, J. S. Dickschat, Angew. Chem. 2017, 129, 2820–2823;.
Angew. Chem. Int. Ed. 2017, 56, 2776–2779.
H. Xu, L. Lauterbach, B. Goldfuss, G. Schnakenburg, J. S. Dickschat, Nat. Chem. 2023, 15, 1164–1171.
F. Pietrucci, Rev. Phys. 2017, 2, 32–45.
R. B. Woodward, R. Hoffmann, J. Am. Chem. 1965, 87, 2511–2513.
L. Velluz, G. Amiard, A. Petit, Bull. Soc. Chim. Fr. 1949, 16, 501–508.
R. Meana-Paneda, A. Fernandez-Ramos, J. Am. Chem. Soc. 2012, 134, 346–354.
J. Rinkel, L. Lauterbach, J. S. Dickschat, Angew. Chem. 2019, 131, 461–465;.
Angew. Chem. Int. Ed. 2019, 58, 452–455.
J. Rinkel, P. Rabe, L. zur Horst, J. S. Dickschat, Beilstein J. Org. Chem. 2016, 12, 2317–2324.
K. Grob, F. Zürcher, J. Chromatogr. 1976, 117, 285–294.
Y. J. Hong, D. J. Tantillo, J. Am. Chem. Soc. 2009, 131, 7999–8015.
H. Sato, T. Mitsuhashi, M. Yamazaki, I. Abe, M. Uchiyama, Angew. Chem. Int. Ed. 2018, 57, 14752–14757;.
Angew. Chem. 2018, 130, 14968–14973.
D. Yi, T. Bayer, C. P. S. Badenhorst, S. Wu, M. Doerr, M. Höhne, U. T. Bornscheuer, Chem. Soc. Rev. 2021, 50, 8003–8049.
N. G. H. Leferink, N. S. Scrutton, ChemBioChem 2022, 23, e202100484.
معلومات مُعتمدة: 513548540 Deutsche Forschungsgemeinschaft
فهرسة مساهمة: Keywords: biosynthesis; enzymes; isotopes; sigmatropic rearrangements; terpenes
المشرفين على المادة: 0 (Terpenes)
0 (Sesterterpenes)
EC 2.5.- (Alkyl and Aryl Transferases)
EC 2.5.1.- (terpene synthase)
تواريخ الأحداث: Date Created: 20240219 Date Completed: 20240425 Latest Revision: 20240730
رمز التحديث: 20240730
DOI: 10.1002/anie.202401539
PMID: 38372063
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202401539