دورية أكاديمية

Regulation of stress granule formation in human oligodendrocytes.

التفاصيل البيبلوغرافية
العنوان: Regulation of stress granule formation in human oligodendrocytes.
المؤلفون: Pernin F; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada., Cui QL; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada., Mohammadnia A; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada., Fernandes MGF; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada., Hall JA; Department of Neurosurgery, McGill University Health Centre, Montreal, QC, Canada., Srour M; Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, QC, Canada., Dudley RWR; Department of Pediatric Neurosurgery, Montreal Children's Hospital, Montreal, QC, Canada., Zandee SEJ; Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada., Klement W; Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada., Prat A; Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada., Salapa HE; Cameco Multiple Sclerosis Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada., Levin MC; Cameco Multiple Sclerosis Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, Canada., Moore GRW; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada., Kennedy TE; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada., Vande Velde C; Centre de Recherche Hospitalier de l'Université de Montréal, Montréal, QC, Canada., Antel JP; Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada. jack.antel@mcgill.ca.
المصدر: Nature communications [Nat Commun] 2024 Feb 19; Vol. 15 (1), pp. 1524. Date of Electronic Publication: 2024 Feb 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Cytoplasmic Granules*/metabolism , Multiple Sclerosis*/metabolism, Humans ; Stress Granules ; Oligodendroglia ; Cytokines/metabolism ; Stress, Physiological
مستخلص: Oligodendrocyte (OL) injury and subsequent loss is a pathologic hallmark of multiple sclerosis (MS). Stress granules (SGs) are membrane-less organelles containing mRNAs stalled in translation and considered as participants of the cellular response to stress. Here we show SGs in OLs in active and inactive areas of MS lesions as well as in normal-appearing white matter. In cultures of primary human adult brain derived OLs, metabolic stress conditions induce transient SG formation in these cells. Combining pro-inflammatory cytokines, which alone do not induce SG formation, with metabolic stress results in persistence of SGs. Unlike sodium arsenite, metabolic stress induced SG formation is not blocked by the integrated stress response inhibitor. Glycolytic inhibition also induces persistent SGs indicating the dependence of SG formation and disassembly on the energetic glycolytic properties of human OLs. We conclude that SG persistence in OLs in MS reflects their response to a combination of metabolic stress and pro-inflammatory conditions.
(© 2024. The Author(s).)
References: Frischer, J. M. et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann. Neurol. 78, 710–721 (2015). (PMID: 26239536462397010.1002/ana.24497)
Haase, S. & Linker, R. A. Inflammation in multiple sclerosis. Ther. Adv. Neurol. Disord. 14, 17562864211007687 (2021). (PMID: 33948118805383210.1177/17562864211007687)
Kuhlmann, T. et al. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 133, 13–24 (2017). (PMID: 2798884510.1007/s00401-016-1653-y)
Davies, A. L. et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann. Neurol. 74, 815–825 (2013). (PMID: 2403827910.1002/ana.24006)
Martinez Sosa, S. & Smith, K. J. Understanding a role for hypoxia in lesion formation and location in the deep and periventricular white matter in small vessel disease and multiple sclerosis. Clin. Sci. 131, 2503–2524 (2017). (PMID: 10.1042/CS20170981)
Halder, S. K. & Milner, R. Hypoxia in multiple sclerosis; is it the chicken or the egg? Brain 144, 402–410 (2021). (PMID: 3335106910.1093/brain/awaa427)
D’Haeseleer, M. M. et al. Cerebral hypoperfusion: a new pathophysiologic concept in multiple sclerosis? J. Cereb. Blood Flow Metab. 35, 1406–1410 (2015). (PMID: 26104292464032610.1038/jcbfm.2015.131)
Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015). (PMID: 2577289710.1016/S1474-4422(14)70256-X)
Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021). (PMID: 34497421871928210.1038/s41586-021-03892-7)
Schirmer, L. et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 573, 75–82 (2019). (PMID: 31316211673112210.1038/s41586-019-1404-z)
Kedersha, N., Ivanov, P. & Anderson, P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci. 38, 494–506 (2013). (PMID: 2402941910.1016/j.tibs.2013.07.004)
Glauninger, H., Wong Hickernell, C. J., Bard, J. A. M. & Drummond, D. A. Stressful steps: progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules. Mol. Cell 82, 2544–2556 (2022). (PMID: 35662398930873410.1016/j.molcel.2022.05.014)
Klann, K., Tascher, G. & Münch, C. Functional translatome proteomics reveal converging and dose-dependent regulation by mTORC1 and eIF2α. Mol. Cell 77, 913–925.e914 (2020). (PMID: 31812349703356010.1016/j.molcel.2019.11.010)
Koromilas, A. E. M(en)TORship lessons on life and death by the integrated stress response. Biochim. Biophys. Acta Gen. Subj. 1863, 644–649 (2019). (PMID: 3057200310.1016/j.bbagen.2018.12.009)
Riggs, C. L., Kedersha, N., Ivanov, P. & Anderson, P. Mammalian stress granules and P bodies at a glance. J. Cell Sci. 133, jcs242487 (2020). (PMID: 328737151067941710.1242/jcs.242487)
Pernin, F. et al. Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain 145, 4320–4333 (2022). (PMID: 3520246210.1093/brain/awac075)
Thedieck, K. et al. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 154, 859–874 (2013). (PMID: 2395311610.1016/j.cell.2013.07.031)
Fujimura, K., Sasaki, A. T. & Anderson, P. Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res. 40, 8099–8110 (2012). (PMID: 22718973343992710.1093/nar/gks566)
Salapa, H. E., Johnson, C., Hutchinson, C., Popescu, B. F. & Levin, M. C. Dysfunctional RNA binding proteins and stress granules in multiple sclerosis. J. Neuroimmunol. 324, 149–156 (2018). (PMID: 3019008510.1016/j.jneuroim.2018.08.015)
Heß, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020). (PMID: 32710244742440810.1007/s00401-020-02189-9)
Pike, G. B. et al. Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 215, 824–830 (2000). (PMID: 1083170510.1148/radiology.215.3.r00jn02824)
Fernandes, M. G. F. et al. Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Commun. Biol. 4, 20 (2021). (PMID: 33398046778248110.1038/s42003-020-01557-1)
Baerwald, K. D. & Popko, B. Developing and mature oligodendrocytes respond differently to the immune cytokine interferon-gamma. J. Neurosci. Res. 52, 230–239 (1998). (PMID: 957941310.1002/(SICI)1097-4547(19980415)52:2<230::AID-JNR11>3.0.CO;2-B)
Franklin, R. J. Why does remyelination fail in multiple sclerosis? Nat. Rev. Neurosci. 3, 705–714 (2002). (PMID: 1220911910.1038/nrn917)
Patel, J. & Balabanov, R. Molecular mechanisms of oligodendrocyte injury in multiple sclerosis and experimental autoimmune encephalomyelitis. Int. J. Mol. Sci. 13, 10647–10659 (2012). (PMID: 22949885343188310.3390/ijms130810647)
Protter, D. S. W. & Parker, R. Principles and properties of stress granules. Trends Cell Biol. 26, 668–679 (2016). (PMID: 27289443499364510.1016/j.tcb.2016.05.004)
Hofmann, S., Kedersha, N., Anderson, P. & Ivanov, P. Molecular mechanisms of stress granule assembly and disassembly. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118876 (2021). (PMID: 3300733110.1016/j.bbamcr.2020.118876)
Wang, T. et al. Intracellular energy controls dynamics of stress-induced ribonucleoprotein granules. Nat. Commun. 13, 5584 (2022). (PMID: 36151083950825310.1038/s41467-022-33079-1)
Mahboubi, H. & Stochaj, U. Cytoplasmic stress granules: dynamic modulators of cell signaling and disease. Biochim. Biophys. Acta Mol. Basis. Dis. 1863, 884–895 (2017). (PMID: 2809531510.1016/j.bbadis.2016.12.022)
Wolozin, B. & Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 20, 649–666 (2019). (PMID: 31582840698631510.1038/s41583-019-0222-5)
Sidibé, H. & Vande Velde, C. Collective learnings of studies of stress granule assembly and composition. Methods Mol. Biol. 2428, 199–228 (2022). (PMID: 3517148210.1007/978-1-0716-1975-9_13)
Sidrauski, C., McGeachy, A. M., Ingolia, N. T. & Walter, P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife 4, e05033 (2015). (PMID: 25719440434146610.7554/eLife.05033)
Rone, M. B. et al. Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival. J. Neurosci. 36, 4698–4707 (2016). (PMID: 27122029660172510.1523/JNEUROSCI.4077-15.2016)
Reineke, L. C., Cheema, S. A., Dubrulle, J. & Neilson, J. R. Chronic starvation induces noncanonical pro-death stress granules. J. Cell Sci. 131, jcs220244 (2018). (PMID: 30185525619845510.1242/jcs.220244)
Chen, W. & Guéron, M. The inhibition of bovine heart hexokinase by 2-deoxy-D-glucose-6-phosphate: characterization by 31P NMR and metabolic implications. Biochimie 74, 867–873 (1992). (PMID: 146734510.1016/0300-9084(92)90070-U)
Henke, B. R. & Sparks, S. M. Glycogen phosphorylase inhibitors. Mini Rev. Med. Chem. 6, 845–857 (2006). (PMID: 1691849110.2174/138955706777934991)
Dewey, C. M. et al. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 1462, 16–25 (2012). (PMID: 22405725337258110.1016/j.brainres.2012.02.032)
Gasset-Rosa, F. et al. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron 102, 339–357.e337 (2019). (PMID: 30853299654832110.1016/j.neuron.2019.02.038)
Jäkel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019). (PMID: 30747918654454610.1038/s41586-019-0903-2)
Fay, M. M. & Anderson, P. J. The role of RNA in biological phase separations. J. Mol. Biol. 430, 4685–4701 (2018). (PMID: 29753780620430310.1016/j.jmb.2018.05.003)
Fu, Y. & Zhuang, X. m(6)A-binding YTHDF proteins promote stress granule formation. Nat. Chem. Biol. 16, 955–963 (2020). (PMID: 32451507744272710.1038/s41589-020-0524-y)
Asadi, M. R. et al. Stress granules and neurodegenerative disorders: a scoping review. Front. Aging Neurosci. 13, 650740 (2021). (PMID: 34248597826106310.3389/fnagi.2021.650740)
Buchan, J. R., Kolaitis, R. M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153, 1461–1474 (2013). (PMID: 23791177376014810.1016/j.cell.2013.05.037)
Yoo, H., Bard, J. A. M., Pilipenko, E. V. & Drummond, D. A. Chaperones directly and efficiently disperse stress-triggered biomolecular condensates. Mol. Cell 82, 741–755.e711 (2022). (PMID: 35148816885705710.1016/j.molcel.2022.01.005)
Ries, R. J. et al. m(6)A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019). (PMID: 31292544666291510.1038/s41586-019-1374-1)
Okamura, M., Inose, H. & Masuda, S. RNA Export through the NPC in Eukaryotes. Genes 6, 124–149 (2015). (PMID: 25802992437783610.3390/genes6010124)
Cunningham, C. N., Schmidt, C. A., Schramm, N. J., Gaylord, M. R. & Resendes, K. K. Human TREX2 components PCID2 and centrin 2, but not ENY2, have distinct functions in protein export and co-localize to the centrosome. Exp. Cell Res. 320, 209–218 (2014). (PMID: 2429114610.1016/j.yexcr.2013.11.015)
Mahboubi, H., Seganathy, E., Kong, D. & Stochaj, U. Identification of novel stress granule components that are involved in nuclear transport. PLoS One 8, e68356 (2013). (PMID: 23826389369491910.1371/journal.pone.0068356)
Guzikowski, A. R., Chen, Y. S. & Zid, B. M. Stress-induced mRNP granules: form and function of processing bodies and stress granules. Wiley Interdiscip. Rev. RNA 10, e1524 (2019). (PMID: 30793528650049410.1002/wrna.1524)
Burgess, H. M. & Gray, N. K. An integrated model for the nucleo-cytoplasmic transport of cytoplasmic poly(A)-binding proteins. Commun. Integr. Biol. 5, 243–247 (2012). (PMID: 22896784341910610.4161/cib.19347)
Bampton, A., Gittings, L. M., Fratta, P., Lashley, T. & Gatt, A. The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol. 140, 599–623 (2020). (PMID: 32748079754704410.1007/s00401-020-02203-0)
Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17, 1374–1395 (2016). (PMID: 27629041504837810.15252/embr.201642195)
Saveljeva, S. et al. Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 7, 12254–12266 (2016). (PMID: 26930721491428210.18632/oncotarget.7601)
Ma, X. M. & Blenis, J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307–318 (2009). (PMID: 1933997710.1038/nrm2672)
Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731–745 (2009). (PMID: 19239892361032910.1016/j.cell.2009.01.042)
Li, M., Hamilton, R., Salapa, H. E. & Levin, M. C. Pro-Inflammatory cytokines and antibodies induce hnRNP A1 dysfunction in mouse primary cortical neurons. Brain Sci 11, 1282 (2021). (PMID: 34679349853384910.3390/brainsci11101282)
Khalfallah, Y. et al. TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types. Sci. Rep. 8, 7551 (2018). (PMID: 29765078595394710.1038/s41598-018-25767-0)
Ivanov, P., Kedersha, N. & Anderson, P. Stress granules and processing bodies in translational control. Cold Spring Harb Perspect. Biol. 11, a032813 (2019). (PMID: 30082464649634710.1101/cshperspect.a032813)
Chen, Y. et al. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. Glia 71, 2180–2195 (2023). (PMID: 3720325010.1002/glia.24386)
Chen, Y. et al. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 142, 344–361 (2019). (PMID: 30657878635178210.1093/brain/awy322)
Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019). (PMID: 30675058642006710.1038/s41586-018-0842-3)
Meyer, N. & Rinholm, J. E. Mitochondria in myelinating oligodendrocytes: slow and out of breath? Metabolites 11, 359 (2021). (PMID: 34198810822670010.3390/metabo11060359)
Aulas, A. et al. Stress-specific differences in assembly and composition of stress granules and related foci. J. Cell Sci. 130, 927–937 (2017). (PMID: 280964755358336)
Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013). (PMID: 23629963363939810.1083/jcb.201302044)
Salapa, H. E., Hutchinson, C., Popescu, B. F. & Levin, M. C. Neuronal RNA-binding protein dysfunction in multiple sclerosis cortex. Ann. Clin. Transl. Neurol. 7, 1214–1224 (2020). (PMID: 32608162735912910.1002/acn3.51103)
Masaki, K. et al. RNA-binding protein altered expression and mislocalization in MS. Neurol. Neuroimmunol. Neuroinflamm. 7, e704 (2020). (PMID: 32217641717624610.1212/NXI.0000000000000704)
Hoch-Kraft, P., Trotter, J. & Gonsior, C. Missing in action: dysfunctional RNA metabolism in oligodendroglial cells as a contributor to neurodegenerative diseases? Neurochem. Res. 45, 566–579 (2020). (PMID: 30843138)
Dhaeze, T. et al. CD70 defines a subset of proinflammatory and CNS-pathogenic T(H)1/T(H)17 lymphocytes and is overexpressed in multiple sclerosis. Cell Mol. Immunol. 16, 652–665 (2019). (PMID: 30635649680466810.1038/s41423-018-0198-5)
Sanmarco, L. M. et al. Gut-licensed IFNγ(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature 590, 473–479 (2021). (PMID: 33408417803991010.1038/s41586-020-03116-4)
Cui, Q. L. et al. Sublethal oligodendrocyte injury: a reversible condition in multiple sclerosis? Ann. Neurol. 81, 811–824 (2017). (PMID: 2847069510.1002/ana.24944)
Zakaria, C. et al. Active-site mTOR inhibitors augment HSV1-dICP0 infection in cancer cells via dysregulated eIF4E/4E-BP axis. PLoS Pathog. 14, e1007264 (2018). (PMID: 30138450612481410.1371/journal.ppat.1007264)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006). (PMID: 1664200910.1038/ng0506-500)
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
المشرفين على المادة: 0 (Cytokines)
تواريخ الأحداث: Date Created: 20240219 Date Completed: 20240221 Latest Revision: 20240222
رمز التحديث: 20240223
مُعرف محوري في PubMed: PMC10876533
DOI: 10.1038/s41467-024-45746-6
PMID: 38374028
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-45746-6