دورية أكاديمية

A Benchtop Round Window Model for Studying Magnetic Nanoparticle Transport to the Inner Ear.

التفاصيل البيبلوغرافية
العنوان: A Benchtop Round Window Model for Studying Magnetic Nanoparticle Transport to the Inner Ear.
المؤلفون: Goyal MM; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA., Shen SA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA., Lehar M; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA., Martinez A; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA., Hiel H; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA., Wang C; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA., Liu Y; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA., Wang C; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA., Sun DQ; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.; Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
المصدر: The Laryngoscope [Laryngoscope] 2024 Jul; Vol. 134 (7), pp. 3355-3362. Date of Electronic Publication: 2024 Feb 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: United States NLM ID: 8607378 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-4995 (Electronic) Linking ISSN: 0023852X NLM ISO Abbreviation: Laryngoscope Subsets: MEDLINE
أسماء مطبوعة: Publication: <2009- >: Philadelphia, PA : Wiley-Blackwell
Original Publication: St. Louis, Mo. : [s.n., 1896-
مواضيع طبية MeSH: Round Window, Ear*/metabolism , Drug Delivery Systems*, Guinea Pigs ; Animals ; Ear, Inner/metabolism ; Magnetic Iron Oxide Nanoparticles/chemistry ; Microscopy, Confocal ; Microscopy, Electron, Transmission ; Magnetite Nanoparticles ; Printing, Three-Dimensional ; Polyethylene Glycols/chemistry
مستخلص: Introduction: The round window membrane (RWM) presents a significant barrier to the local application of therapeutics to the inner ear. We demonstrate a benchtop preclinical RWM model and evaluate superparamagnetic iron oxide nanoparticles (SPIONs) as vehicles for magnetically assisted drug delivery.
Methods: Guinea pig RWM explants were inset into a 3D-printed dual chamber benchtop device. Custom-synthesized 7-nm iron core nanoparticles were modified with different polyethylene glycol chains to yield two sizes of SPIONs (NP-PEG600 and NP-PEG3000) and applied to the benchtop model with and without a magnetic field. Histologic analysis of the RWM was performed using transmission electron microscopy (TEM) and confocal microscopy.
Results: Over a 4-h period, 19.5 ± 1.9% of NP-PEG3000 and 14.6 ± 1.9% of NP-PEG600 were transported across the guinea pig RWM. The overall transport increased by 1.45× to 28.4 ± 5.8% and 21.0 ± 2.0%, respectively, when a magnetic field was applied. Paraformaldehyde fixation of the RWM decreased transport significantly (NP-PEG3000: 7.6 ± 1.5%; NP-PEG600: 7.0 ± 1.6%). Confocal and electron microscopy analysis demonstrated nanoparticle localization throughout all cellular layers and layer-specific transport characteristics within RWM.
Conclusion: The guinea pig RWM explant benchtop model allows for targeted and practical investigations of transmembrane transport in the development of nanoparticle drug delivery vehicles. The presence of a magnetic field increases SPION delivery by 45%-50% in a nanoparticle size- and cellular layer-dependent manner.
Level of Evidence: NA Laryngoscope, 134:3355-3362, 2024.
(© 2024 The American Laryngological, Rhinological and Otological Society, Inc.)
References: World Health Organization Deafness and Hearing Loss [Fact Sheet]. 2023.
McCall AA, Swan EE, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear Hear. 2010;31(2):156‐165. https://doi.org/10.1097/AUD.0b013e3181c351f2.
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res. 2020;394:107927. Epub 2020/03/23. https://doi.org/10.1016/j.heares.2020.107927.
Mukherjee S, Kuroiwa M, Oakden W, et al. Local magnetic delivery of adeno‐associated virus AAV2(quad Y‐F)‐mediated BDNF gene therapy restores hearing after noise injury. Mol Ther. 2021;30:519‐533. https://doi.org/10.1016/j.ymthe.2021.07.013.
Wise AK, Tan J, Wang Y, Caruso F, Shepherd RK. Improved auditory nerve survival with nanoengineered supraparticles for neurotrophin delivery into the deafened cochlea. PLoS One. 2016;11(10):e0164867. https://doi.org/10.1371/journal.pone.0164867.
Yu M, Arteaga DN, Aksit A, et al. Anatomical and functional consequences of microneedle perforation of round window membrane. Otol Neurotol. 2020;41(2):e280‐e287. https://doi.org/10.1097/mao.0000000000002491.
Borden RC, Saunders JE, Berryhill WE, Krempl GA, Thompson DM, Queimado L. Hyaluronic acid hydrogel sustains the delivery of dexamethasone across the round window membrane. Audiol Neurootol. 2011;16(1):1‐11. https://doi.org/10.1159/000313506.
Ramaswamy B, Roy S, Apolo AB, Shapiro B, Depireux DA. Magnetic nanoparticle mediated steroid delivery mitigates cisplatin induced hearing loss. Front Cell Neurosci. 2017;11:268. https://doi.org/10.3389/fncel.2017.00268.
Shapiro B, Dormer K, Rutel IB. A two‐magnet system to push therapeutic nanoparticles. AIP Conf Proc. 2010;1311(1):77‐88. https://doi.org/10.1063/1.3530064.
Wahajuddin M, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445‐3471. https://doi.org/10.2147/ijn.S30320.
Barnes AL, Wassel RA, Mondalek F, Chen K, Dormer KJ, Kopke RD. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes. Biomagn Res Technol. 2007;5:1. https://doi.org/10.1186/1477-044x-5-1.
Mondalek FG, Zhang YY, Kropp B, et al. The permeability of SPION over an artificial three‐layer membrane is enhanced by external magnetic field. J Nanobiotechnology. 2006;4:4. https://doi.org/10.1186/1477-3155-4-4.
Du X, Chen K, Kuriyavar S, et al. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in Guinea pigs. Otol Neurotol. 2013;34(1):41‐47. https://doi.org/10.1097/MAO.0b013e318277a40e.
Nowak‐Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnol. 2022;20(1):305. https://doi.org/10.1186/s12951-022-01510-w.
Shasha C, Krishnan KM. Nonequilibrium dynamics of magnetic nanoparticles with applications in biomedicine. Adv Mater. 2021;33(23):1904131. https://doi.org/10.1002/adma.201904131.
Nguyen Y, Celerier C, Pszczolinski R, et al. Superparamagnetic nanoparticles as vectors for inner ear treatments: driving and toxicity evaluation. Acta Otolaryngol. 2016;136(4):402‐408. https://doi.org/10.3109/00016489.2015.1129069.
Goycoolea MV, Lundman L. Round window membrane. Structure function and permeability: a review. Microsc Res Tech. 1997;36(3):201‐211. https://doi.org/10.1002/(sici)1097-0029(19970201)36:3<201::Aid-jemt8>3.0.Co;2-r.
Ghiz AF, Salt AN, DeMott JE, Henson MM, Henson OW Jr, Gewalt SL. Quantitative anatomy of the round window and cochlear aqueduct in Guinea pigs. Hear Res. 2001;162(1–2):105‐112. https://doi.org/10.1016/s0378-5955(01)00375-6.
Xie J, Xu C, Kohler N, Hou Y, Sun S. Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non‐specific uptake by macrophage cells. Adv Mater. 2007;19(20):3163‐3166. https://doi.org/10.1002/adma.200701975.
Goyal MM. Biosensor Development: Optimizing Immunomagnetic Separation of Bacteria. Johns Hopkins University; 2019.
Hedayati M, Abubaker‐Sharif B, Khattab M, et al. An optimised spectrophotometric assay for convenient and accurate quantitation of intracellular iron from iron oxide nanoparticles. Int J Hyperthermia. 2018;34(4):373‐381. https://doi.org/10.1080/02656736.2017.1354403.
Fuchs PA, Lehar M, Hiel H. Ultrastructure of cisternal synapses on outer hair cells of the mouse cochlea. J Comp Neurol. 2014;522(3):717‐729. https://doi.org/10.1002/cne.23478.
Kopke RD, Wassel RA, Mondalek F, et al. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol Neurootol. 2006;11(2):123‐133. https://doi.org/10.1159/000090685.
Shih CP, Chen HC, Chen HK, et al. Ultrasound‐aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. J Control Release. 2013;167(2):167‐174. https://doi.org/10.1016/j.jconrel.2013.01.028.
Forouzandeh F, Borkholder DA. Microtechnologies for inner ear drug delivery. Curr Opin Otolaryngol Head Neck Surg. 2020;28(5):323‐328. https://doi.org/10.1097/moo.0000000000000648.
Singh R, Birru B, Veit JGS, Arrigali EM, Serban MA. Development and characterization of an in vitro round window membrane model for drug permeability evaluations. Pharmaceuticals. 2022;15(9). https://doi.org/10.3390/ph15091105.
Veit JGS, Birru B, Wang Y, et al. An evaluation of the drug permeability properties of human cadaveric in situ tympanic and round window membranes. Pharmaceuticals. 2022;15(9). https://doi.org/10.3390/ph15091037.
Kelso CM, Watanabe H, Wazen JM, et al. Microperforations significantly enhance diffusion across round window membrane. Otol Neurotol. 2015;36(4):694‐700. https://doi.org/10.1097/mao.0000000000000629.
Lundman L, Bagger‐Sjöbäck D, Holmquist L, Juhn S. Round window membrane permeability. An in vitro model. Acta Otolaryngol Suppl. 1989;457:73‐77. https://doi.org/10.3109/00016488809138887.
Zhang L, Xu Y, Cao W, Xie S, Wen L, Chen G. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: a guideline for inner ear drug delivery based on nanomedicine. Int J Nanomed. 2018;13:479‐492. https://doi.org/10.2147/ijn.S154968.
Goycoolea MV. Clinical aspects of round window membrane permeability under normal and pathological conditions. Acta Otolaryngol. 2001;121(4):437‐447. https://doi.org/10.1080/000164801300366552.
Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron Nanocompounds gateway into the cell. Pharmaceutics. 2020;12(4). https://doi.org/10.3390/pharmaceutics12040371.
Jeong SH, Kim Y, Lyu AR, et al. Junctional modulation of round window membrane enhances dexamethasone uptake into the inner ear and recovery after NIHL. Int J Mol Sci. 2021;22(18). https://doi.org/10.3390/ijms221810061.
Chandrasekhar SS, Tsai Do BS, Schwartz SR, et al. Clinical practice guideline: sudden hearing loss (update). Otolaryngol Head Neck Surg. 2019;161(1_suppl):S1‐s45. https://doi.org/10.1177/0194599819859885.
Liu H, Chen S, Zhou Y, et al. The effect of surface charge of glycerol monooleate‐based nanoparticles on the round window membrane permeability and cochlear distribution. J Drug Target. 2013;21(9):846‐854. https://doi.org/10.3109/1061186x.2013.829075.
Roy S, Glueckert R, Johnston AH, et al. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine. 2012;7(1):55‐63. https://doi.org/10.2217/nnm.11.84.
Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6(4):715‐728. https://doi.org/10.2217/nnm.11.19.
Li M, Jiang S, Simon J, et al. Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Lett. 2021;21(4):1591‐1598. https://doi.org/10.1021/acs.nanolett.0c03756.
Salt AN, Plontke SK. Pharmacokinetic principles in the inner ear: influence of drug properties on intratympanic applications. Hear Res. 2018;368:28‐40. https://doi.org/10.1016/j.heares.2018.03.002.
Moatti A, Silkstone D, Martin T, et al. Assessment of drug permeability through an ex vivo porcine round window membrane model. iScience. 2023;26(6):106789. https://doi.org/10.1016/j.isci.2023.106789.
معلومات مُعتمدة: K08 DC020780 United States DC NIDCD NIH HHS; K08DC020780 United States DC NIDCD NIH HHS; 5T32DC000027-33 United States DC NIDCD NIH HHS; K08DC020780 United States DC NIDCD NIH HHS; 5T32DC000027-33 United States DC NIDCD NIH HHS
فهرسة مساهمة: Keywords: drug delivery; ex vivo model; hearing loss; intratympanic delivery; nanoparticle transport; round window membrane; super‐paramagnetic iron oxide nanoparticles
المشرفين على المادة: 0 (Magnetite Nanoparticles)
3WJQ0SDW1A (Polyethylene Glycols)
تواريخ الأحداث: Date Created: 20240221 Date Completed: 20240617 Latest Revision: 20240617
رمز التحديث: 20240617
DOI: 10.1002/lary.31345
PMID: 38379206
قاعدة البيانات: MEDLINE
الوصف
تدمد:1531-4995
DOI:10.1002/lary.31345