دورية أكاديمية

The therapeutic potential of immunoengineering for systemic autoimmunity.

التفاصيل البيبلوغرافية
العنوان: The therapeutic potential of immunoengineering for systemic autoimmunity.
المؤلفون: McBride DA; Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA., Jones RM; Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA., Bottini N; Kao Autoimmunity Institute and Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA. nunzio.bottini@cshs.org., Shah NJ; Department of NanoEngineering and Chemical Engineering Program, University of California, San Diego, La Jolla, CA, USA. nshah@ucsd.edu.
المصدر: Nature reviews. Rheumatology [Nat Rev Rheumatol] 2024 Apr; Vol. 20 (4), pp. 203-215. Date of Electronic Publication: 2024 Feb 21.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101500080 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1759-4804 (Electronic) Linking ISSN: 17594790 NLM ISO Abbreviation: Nat Rev Rheumatol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group
مواضيع طبية MeSH: Autoimmunity* , Autoimmune Diseases*/therapy, Humans ; Inflammation ; Adaptive Immunity
مستخلص: Disease-modifying drugs have transformed the treatment options for many systemic autoimmune diseases. However, an evolving understanding of disease mechanisms, which might vary between individuals, is paving the way for the development of novel agents that operate in a patient-tailored manner through immunophenotypic regulation of disease-relevant cells and the microenvironment of affected tissue domains. Immunoengineering is a field that is focused on the application of engineering principles to the modulation of the immune system, and it could enable future personalized and immunoregulatory therapies for rheumatic diseases. An important aspect of immunoengineering is the harnessing of material chemistries to design technologies that span immunologically relevant length scales, to enhance or suppress immune responses by re-balancing effector and regulatory mechanisms in innate or adaptive immunity and rescue abnormalities underlying pathogenic inflammation. These materials are endowed with physicochemical properties that enable features such as localization in immune cells and organs, sustained delivery of immunoregulatory agents, and mimicry of key functions of lymphoid tissue. Immunoengineering applications already exist for disease management, and there is potential for this new discipline to improve disease modification in rheumatology.
(© 2024. Springer Nature Limited.)
References: McInnes, I. B. & Gravallese, E. M. Immune-mediated inflammatory disease therapeutics: past, present and future. Nat. Rev. Immunol. 21, 680–686 (2021). (PMID: 34518662843686710.1038/s41577-021-00603-1)
Fraenkel, L. et al. 2021 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 73, 1108–1123 (2021). (PMID: 3410137610.1002/art.41752)
Denis, A., Sztejkowski, C., Arnaud, L., Becker, G. & Felten, R. The 2023 pipeline of disease-modifying antirheumatic drugs (DMARDs) in clinical development for spondyloarthritis (including psoriatic arthritis): a systematic review of trials. RMD Open. 9, e003279 (2023). (PMID: 375072101038765210.1136/rmdopen-2023-003279)
Tuttle, J. et al. A phase 2 trial of peresolimab for adults with rheumatoid arthritis. N. Engl. J. Med. 388, 1853–1862 (2023). (PMID: 3719594110.1056/NEJMoa2209856)
Gravallese, E. M. & Thomas, R. Reinforcing the checkpoint in rheumatoid arthritis. N. Engl. J. Med. 388, 1905–1907 (2023). (PMID: 3719594810.1056/NEJMe2300734)
Donlin, L. T. et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018). (PMID: 29996944604235010.1186/s13075-018-1631-y)
Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 1–10 (2018). (PMID: 10.1038/s41467-017-02659-x)
Dolgin, E. Massive NIH-industry project opens portals to target validation. Nat. Rev. Drug. Discov. 18, 240–242 (2019).
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019). (PMID: 31061532660205110.1038/s41590-019-0378-1)
Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019). (PMID: 31110316658405410.1038/s41590-019-0386-1)
Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019). (PMID: 31209404672643710.1038/s41590-019-0398-x)
Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023). (PMID: 379387731065148710.1038/s41586-023-06708-y)
Tu, Z. et al. Design of therapeutic biomaterials to control inflammation. Nat. Rev. Mater. 7, 557–574 (2022). (PMID: 35251702888410310.1038/s41578-022-00426-z)
Brannon, E. R. et al. Polymeric particle-based therapies for acute inflammatory diseases. Nat. Rev. Mater. 7, 796–813 (2022). (PMID: 35874960929511510.1038/s41578-022-00458-5)
Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11 (2014). (PMID: 2418983910.1038/nrrheum.2013.159)
Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Arthritis gene therapy is becoming a reality. Nat. Rev. Rheumatol. 14, 381–382 (2018). (PMID: 2974362710.1038/s41584-018-0009-5)
Kim, S., Shah, S. B., Graney, P. L. & Singh, A. Multiscale engineering of immune cells and lymphoid organs. Nat. Rev. Mater. 4, 355–378 (2019). (PMID: 31903226694178610.1038/s41578-019-0100-9)
Dellacherie, M. O., Seo, B. R. & Mooney, D. J. Macroscale biomaterials strategies for local immunomodulation. Nat. Rev. Mater. 4, 379–397 (2019). (PMID: 10.1038/s41578-019-0106-3)
Schudel, A., Francis, D. M. & Thomas, S. N. Material design for lymph node drug delivery. Nat. Rev. Mater. 4, 415–428 (2019). (PMID: 32523780728662710.1038/s41578-019-0110-7)
Cifuentes-Rius, A., Desai, A., Yuen, D., Johnston, A. P. R. & Voelcker, N. H. Inducing immune tolerance with dendritic cell-targeting nanomedicines. Nat. Nanotechnol. 16, 37–46 (2021). (PMID: 3334968510.1038/s41565-020-00810-2)
Stabler, C. L., Li, Y., Stewart, J. M. & Keselowsky, B. G. Engineering immunomodulatory biomaterials for type 1 diabetes. Nat. Rev. Mater. 4, 429–450 (2019). (PMID: 32617176733220010.1038/s41578-019-0112-5)
Gammon, J. M. & Jewell, C. M. Engineering immune tolerance with biomaterials. Adv. Healthc. Mater. 8, 1801419 (2019). (PMID: 10.1002/adhm.201801419)
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug. Discov. 20, 101–124 (2021). (PMID: 3327760810.1038/s41573-020-0090-8)
Bertrand, N. et al. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 8, 777 (2017). (PMID: 28974673562676010.1038/s41467-017-00600-w)
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023). (PMID: 10.1038/s41578-023-00552-2)
Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nature Reviews. Materials 8, 282–300 (2023). (PMID: 36691401)
Boehnke N. et al. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science 377, eabm5551 (2022). (PMID: 358625441024903910.1126/science.abm5551)
Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265–291 (2023). (PMID: 3631637810.1038/s41596-022-00755-x)
Moyer, T. J. et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat. Med. 26, 430–440 (2020). (PMID: 32066977706980510.1038/s41591-020-0753-3)
Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15, 491–499 (2020). (PMID: 32523099730597210.1038/s41565-020-0679-4)
Irvine, D. J., Aung, A. & Silva, M. Controlling timing and location in vaccines. Adv. Drug. Deliv. Rev. 158, 91–115 (2020). (PMID: 32598970731896010.1016/j.addr.2020.06.019)
Wilson, D. S. et al. Synthetically glycosylated antigens induce antigen-specific tolerance and prevent the onset of diabetes. Nat. Biomed. Eng. 3, 817–829 (2019). (PMID: 3135888110.1038/s41551-019-0424-1)
Wilson, D. S. et al. Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat. Mater. 18, 175–185 (2019). (PMID: 3064323510.1038/s41563-018-0256-5)
Liu, H. et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522 (2014). (PMID: 24531764406915510.1038/nature12978)
Hartwell, B. L. et al. Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity. Sci. Transl. Med. 14, eabn1413 (2022). (PMID: 35857825983539510.1126/scitranslmed.abn1413)
Seenappa, L. M. et al. Amphiphile-CpG vaccination induces potent lymph node activation and COVID-19 immunity in mice and non-human primates. NPJ Vaccines 7, 128 (2022). (PMID: 36307453961642510.1038/s41541-022-00560-3)
Pant, S. et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: the phase 1 AMPLIFY-201 trial. Nat. Med. https://doi.org/10.1038/s41591-023-02760-3 (2023).
Pradal, J. et al. Effect of particle size on the biodistribution of nano-and microparticles following intra-articular injection in mice. Int. J. Pharm. 498, 119–129 (2016). (PMID: 2668572410.1016/j.ijpharm.2015.12.015)
Horisawa, E. et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res. 19, 132–139 (2002). (PMID: 1188363910.1023/A:1014260513728)
McHugh, K. J. et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science 357, 1138–1142 (2017). (PMID: 2891224210.1126/science.aaf7447)
Sarmadi, M. et al. Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles. Sci. Adv. 8, eabn5315.
Blasi, P. Poly (lactic acid)/poly (lactic-co-glycolic acid)-based microparticles: an overview. J. Pharm. Invest. 49, 337–346 (2019). (PMID: 10.1007/s40005-019-00453-z)
Mandal, A. et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci. Transl. Med. 10, eaar2227 (2018). (PMID: 3042935310.1126/scitranslmed.aar2227)
Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019). (PMID: 30733413643058610.1126/science.aau2277)
Ingber, D. E. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat. Rev. Genet. 23, 467–491 (2022). (PMID: 35338360895166510.1038/s41576-022-00466-9)
Antiochos, B. & Rosen, A. in Clinical Immunology (eds. Rich, R. R. et al.) 2nd edn, 677–684.e1 (Elsevier, 2019).
Moritz, C. P. et al. Autoantigenomics: holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun. Rev. 19, 102450 (2020). (PMID: 3183816510.1016/j.autrev.2019.102450)
Bronge, M. et al. Identification of four novel T cell autoantigens and personal autoreactive profiles in multiple sclerosis. Sci. Adv. 8, eabn1823 (2022). (PMID: 35476434904561510.1126/sciadv.abn1823)
Wythe, S. E. et al. Targeted delivery of cytokine therapy to rheumatoid tissue by a synovial targeting peptide. Ann. Rheum. Dis. 72, 129–135 (2013). (PMID: 2284348610.1136/annrheumdis-2012-201457)
Ferrari, M., Onuoha, S. C. & Pitzalis, C. Trojan horses and guided missiles: targeted therapies in the war on arthritis. Nat. Rev. Rheumatol. 11, 328–337 (2015). (PMID: 2573497110.1038/nrrheum.2015.17)
Yuba, E. et al. Suppression of rheumatoid arthritis by enhanced lymph node trafficking of engineered interleukin‐10 in murine models. Arthritis Rheumatol. 73, 769–778 (2021). (PMID: 3316952210.1002/art.41585)
Gao, M., Liu, S., Chatham, W. W., Mountz, J. D. & Hsu, H.-C. IL-4-induced quiescence of resting naive B cells is disrupted in systemic lupus erythematosus. J. Immunol. 209, 1513–1522 (2022). (PMID: 3616518110.4049/jimmunol.2200409)
Ishihara, A. et al. Prolonged residence of an albumin–IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat. Biomed. Eng. 5, 387–398 (2020). (PMID: 3304686410.1038/s41551-020-00627-3)
Kishimoto, T. K. et al. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat. Nanotech 11, 890–899 (2016). (PMID: 10.1038/nnano.2016.135)
Sands, E., Kivitz, A. J., DeHaan, W., Johnston, L. & Kishimoto, T. K. Update of SEL-212 phase 2 clinical data in symptomatic gout patients: Svp-rapamycin combined with pegadricase mitigates immunogenicity and enables sustained reduction of serum uric acid levels, low rate of gout flares and monthly dosing [abstract]. Arthritis Rheum. 70 (suppl. 10), 2487 (2018).
Kishimoto, T. K. Development of ImmTOR tolerogenic nanoparticles for the mitigation of anti-drug antibodies. Front. Immunol. 11, 969 (2020). (PMID: 32508839725106610.3389/fimmu.2020.00969)
Allen, R., Chizari, S., Ma, J. A., Raychaudhuri, S. & Lewis, J. S. Combinatorial, microparticle-based delivery of immune modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. ACS Appl. Bio Mater. 2, 2388–2404 (2019). (PMID: 3503069610.1021/acsabm.9b00092)
Bassin, E. J., Buckley, A. R., Piganelli, J. D. & Little, S. R. TRI microparticles prevent inflammatory arthritis in a collagen-induced arthritis model. PLOS One 15, e0239396 (2020). (PMID: 32966314751096310.1371/journal.pone.0239396)
Galea, R. et al. PD-L1–and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCI Insight 4, e126025 (2019). (PMID: 31487265679529710.1172/jci.insight.126025)
McHugh, J. Liposomal targeting of DCs to induce tolerance. Nat. Rev. Rheumatol. 15, 699–699 (2019). (PMID: 3164571410.1038/s41584-019-0330-7)
Johnson, W. T. et al. Immunomodulatory nanoparticles for modulating arthritis flares. ACS Nano 18, 1892–1906 (2023). (PMID: 3801606210.1021/acsnano.3c05298)
Cutolo, M., Smith, V., Paolino, S. & Gotelli, E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat. Rev. Rheumatol. 19, 265–287 (2023). (PMID: 369777911004387210.1038/s41584-023-00944-2)
Sonigra, A. et al. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA + rheumatoid arthritis. JCI Insight 7, e160964 (2022). (PMID: 36278483971478010.1172/jci.insight.160964)
Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021). (PMID: 3341421510.1126/science.aay3638)
Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021). (PMID: 34394960835393010.1038/s41578-021-00358-0)
Singha, S. et al. Peptide–MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat. Nanotech 12, 701–710 (2017). (PMID: 10.1038/nnano.2017.56)
Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016). (PMID: 2688679910.1038/nature16962)
Kontos, S., Kourtis, I. C., Dane, K. Y. & Hubbell, J. A. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc. Natl Acad. Sci. USA 110, E60–E68 (2013). (PMID: 2324826610.1073/pnas.1216353110)
Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021). (PMID: 3363759510.1126/sciimmunol.abe1801)
Hubbell, J. A. & Wilson, D. S. Glycotargeting therapeutics. U.S. Patent No. 10,046,056 (2018).
Casey, L. M. et al. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 283, 121457 (2022). (PMID: 3528685110.1016/j.biomaterials.2022.121457)
Hubbell, J. A., Kontos, S., Lorentz, K. M., Wilson, D. S. & Shuning, G. Glycotargeting therapeutics. U.S. Patent No. 10,821,157 (2020).
Tostanoski, L. H. et al. Reprogramming the local lymph node microenvironment promotes tolerance that is systemic and antigen specific. Cell Rep. 16, 2940–2952 (2016). (PMID: 27626664502472210.1016/j.celrep.2016.08.033)
Scher, J. U., Nayak, R. R., Ubeda, C., Turnbaugh, P. J. & Abramson, S. B. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16, 282–292 (2020). (PMID: 3215719610.1038/s41584-020-0395-3)
Abdollahi-Roodsaz, S., Abramson, S. B. & Scher, J. U. The metabolic role of the gut microbiota in health and rheumatic disease: mechanisms and interventions.Nat. Rev. Rheumatol. 12, 446–455 (2016). (PMID: 2725671310.1038/nrrheum.2016.68)
Hsieh, W.-C. et al. PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis. JCI Insight 5, e141868 (2020). (PMID: 33055428760554210.1172/jci.insight.141868)
Choi, S.-C. et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci. Transl. Med. 12, eaax2220 (2020). (PMID: 32641487773918610.1126/scitranslmed.aax2220)
Wang, R. et al. Treatment of peanut allergy and colitis in mice via the intestinal release of butyrate from polymeric micelles. Nat. Biomed. Eng. 7, 38–55 (2022). (PMID: 36550307987078510.1038/s41551-022-00972-5)
Luu, M. et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat. Commun. 10, 760 (2019). (PMID: 30770822637765510.1038/s41467-019-08711-2)
McBride, D. A. et al. Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro. Drug Deliv. Transl. Res. 13, 1912–1924 (2023). (PMID: 3656626210.1007/s13346-022-01284-6)
Lee, Y. et al. Hyaluronic acid–bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19, 118–126 (2020). (PMID: 3142774410.1038/s41563-019-0462-9)
McBride, D. A. et al. Immunomodulatory microparticles epigenetically modulate T cells and systemically ameliorate autoimmune arthritis. Adv. Sci. 10, e2202720 (2023). (PMID: 10.1002/advs.202202720)
Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016). (PMID: 27365313534351310.1126/science.aaf6756)
Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. 41, 1229–1238 (2023). (PMID: 366583411035421810.1038/s41587-022-01637-z)
Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022). (PMID: 3610963910.1038/s41591-022-02017-5)
Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021). (PMID: 3434796010.1056/NEJMc2107725)
Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023). (PMID: 3735327810.1016/S1474-4422(23)00194-1)
Pecher, A.-C. et al. CD19-targeting CAR T cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 329, 2154–2162 (2023). (PMID: 373679761030071910.1001/jama.2023.8753)
Mueller, F. et al. CD19-targeted CAR-T cells in refractory systemic autoimmune diseases: a monocentric experience from the first fifteen patients. Blood 142, 220–220 (2023). (PMID: 10.1182/blood-2023-180547)
Rosado-Sánchez, I. & Levings, M. K. Building a CAR-Treg: going from the basic to the luxury model. Cell. Immunol. 358, 104220 (2020). (PMID: 3309632110.1016/j.cellimm.2020.104220)
Kisielow, J., Obermair, F.-J. & Kopf, M. Deciphering CD4 + T cell specificity using novel MHC–TCR chimeric receptors. Nat. Immunol. 20, 652–662 (2019). (PMID: 3085862010.1038/s41590-019-0335-z)
Adu-Berchie, K. et al. Generation of functionally distinct T-cell populations by altering the viscoelasticity of their extracellular matrix. Nat. Biomed. Eng. 7, 1374–1391 (2023). (PMID: 3736526710.1038/s41551-023-01052-y)
Agarwalla, P. et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells. Nat. Biotechnol. 40, 1250–1258 (2022). (PMID: 35332339937624310.1038/s41587-022-01245-x)
Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). (PMID: 34990237998361110.1126/science.abm0594)
Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013). (PMID: 2314789610.1038/nrrheum.2012.190)
Zhang, A. Q. et al. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng. 7, 1113–1128 (2023). (PMID: 372914341050408410.1038/s41551-023-01048-8)
Eskandari, S. K. et al. Regulatory T cells engineered with TCR signaling-responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 12, eaaw4744 (2020). (PMID: 33177180851950510.1126/scitranslmed.aaw4744)
Hao, L. et al. Microenvironment-triggered multimodal precision diagnostics. Nat. Mater. 20, 1440–1448 (2021). (PMID: 3426736810.1038/s41563-021-01042-y)
Chan, L. W. et al. Engineering synthetic breath biomarkers for respiratory disease. Nat. Nanotechnol. 15, 792–800 (2020). (PMID: 32690884817371610.1038/s41565-020-0723-4)
Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019). (PMID: 31477801704534410.1038/s41565-019-0527-6)
Amini, A. P. et al. Multiscale profiling of protease activity in cancer. Nat. Commun. 13, 5745 (2022). (PMID: 36192379953017810.1038/s41467-022-32988-5)
Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021). (PMID: 34489588879102410.1038/s41568-021-00389-3)
Cazanave, S. C. et al. Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-barcoded activity-based sensors. Sci. Transl. Med. 13, eabe8939.
Subudhi, S. et al. Distinct hepatic gene‐expression patterns of NAFLD in patients with obesity. Hepatol. Commun. 6, 77–89 (2022). (PMID: 3455884910.1002/hep4.1789)
Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020). (PMID: 33239384787133310.1126/scitranslmed.aaw0285)
Morris, A. H. et al. Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nat. Commun. 11, 3871 (2020). (PMID: 32747712739891010.1038/s41467-020-17629-z)
Zeleniak, A. et al. De novo construction of T cell compartment in humanized mice engrafted with iPSC-derived thymus organoids. Nat. Methods 19, 1306–1319 (2022). (PMID: 3606477210.1038/s41592-022-01583-3)
Goyal, G. et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv. Sci. 9, e2103241 (2022). (PMID: 10.1002/advs.202103241)
Angum, F., Khan, T., Kaler, J., Siddiqui, L. & Hussain, A. The prevalence of autoimmune disorders in women: a narrative review. Cureus 12, e8094 (2020). (PMID: 325421497292717)
تواريخ الأحداث: Date Created: 20240221 Date Completed: 20240329 Latest Revision: 20240329
رمز التحديث: 20240329
DOI: 10.1038/s41584-024-01084-x
PMID: 38383732
قاعدة البيانات: MEDLINE
الوصف
تدمد:1759-4804
DOI:10.1038/s41584-024-01084-x