دورية أكاديمية

Comprehensive Density Functional and Kinetic Monte Carlo Study of CO 2 Hydrogenation on a Well-Defined Ni/CeO 2 Model Catalyst: Role of Eley-Rideal Reactions.

التفاصيل البيبلوغرافية
العنوان: Comprehensive Density Functional and Kinetic Monte Carlo Study of CO 2 Hydrogenation on a Well-Defined Ni/CeO 2 Model Catalyst: Role of Eley-Rideal Reactions.
المؤلفون: Lozano-Reis P; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain., Gamallo P; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain., Sayós R; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain., Illas F; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain.
المصدر: ACS catalysis [ACS Catal] 2024 Jan 30; Vol. 14 (4), pp. 2284-2299. Date of Electronic Publication: 2024 Jan 30 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101562209 Publication Model: eCollection Cited Medium: Print ISSN: 2155-5435 (Print) NLM ISO Abbreviation: ACS Catal Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Chemical Society, c2011-
مستخلص: A detailed multiscale study of the mechanism of CO 2 hydrogenation on a well-defined Ni/CeO 2 model catalyst is reported that couples periodic density functional theory (DFT) calculations with kinetic Monte Carlo (kMC) simulations. The study includes an analysis of the role of Eley-Rideal elementary steps for the water formation step, which are usually neglected on the overall picture of the mechanism, catalytic activity, and selectivity. The DFT calculations for the chosen model consisting of a Ni 4 cluster supported on CeO 2 (111) show large enough adsorption energies along with low energy barriers that suggest this catalyst to be a good option for high selective CO 2 methanation. The kMC simulations results show a synergic effect between the two 3-fold hollow sites of the supported Ni 4 cluster with some elementary reactions dominant in one site, while other reactions prefer the another, nearly equivalent site. This effect is even more evident for the simulations explicitly including Eley-Rideal steps. The kMC simulations reveal that CO is formed via the dissociative pathway of the reverse water-gas shift reaction, while methane is formed via a CO 2 → CO → HCO → CH → CH 2 → CH 3 → CH 4 mechanism. Overall, our results show the importance of including the Eley-Rideal reactions and point to small Ni clusters supported on the CeO 2 (111) surface as potential good catalysts for high selective CO 2 methanation under mild conditions, while very active and selective toward CO formation at higher temperatures.
Competing Interests: The authors declare no competing financial interest.
(© 2024 The Authors. Published by American Chemical Society.)
References: J Phys Condens Matter. 2017 Jul 12;29(27):273002. (PMID: 28323250)
J Chem Phys. 2013 Dec 14;139(22):224706. (PMID: 24329081)
ACS Catal. 2021 Jul 2;11(13):8327-8337. (PMID: 34306812)
Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561. (PMID: 10004490)
ACS Appl Mater Interfaces. 2022 Nov 16;14(45):50739-50750. (PMID: 36321841)
ACS Catal. 2021 Aug 20;11(16):10604-10613. (PMID: 34484854)
J Chem Phys. 2014 Jun 7;140(21):214106. (PMID: 24907989)
Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186. (PMID: 9984901)
Angew Chem Int Ed Engl. 2016 Jun 20;55(26):7455-9. (PMID: 27144344)
J Am Chem Soc. 2018 Jun 20;140(24):7681-7687. (PMID: 29804460)
Phys Rev Lett. 1996 Oct 28;77(18):3865-3868. (PMID: 10062328)
Phys Chem Chem Phys. 2020 Nov 25;22(45):26145-26154. (PMID: 33185221)
J Phys Chem Lett. 2022 Jun 23;13(24):5589-5596. (PMID: 35699247)
J Chem Phys. 2010 Apr 21;132(15):154104. (PMID: 20423165)
Chem Sci. 2023 Feb 1;14(10):2631-2639. (PMID: 36908952)
Angew Chem Int Ed Engl. 2015 Mar 23;54(13):3917-21. (PMID: 25651288)
J Phys Chem B. 2005 Dec 8;109(48):22860-7. (PMID: 16853978)
Angew Chem Int Ed Engl. 2023 Jun 19;62(25):e202302087. (PMID: 37062698)
J Phys Chem Lett. 2020 Nov 5;11(21):9131-9137. (PMID: 33052684)
Acc Chem Res. 2020 Feb 18;53(2):447-458. (PMID: 31977181)
Angew Chem Int Ed Engl. 2017 Oct 9;56(42):13041-13046. (PMID: 28815842)
J Chem Phys. 2011 Jun 7;134(21):214115. (PMID: 21663352)
J Phys Chem Lett. 2018 Apr 5;9(7):1696-1702. (PMID: 29551071)
تواريخ الأحداث: Date Created: 20240222 Latest Revision: 20240224
رمز التحديث: 20240224
مُعرف محوري في PubMed: PMC10877572
DOI: 10.1021/acscatal.3c05336
PMID: 38384940
قاعدة البيانات: MEDLINE
الوصف
تدمد:2155-5435
DOI:10.1021/acscatal.3c05336