دورية أكاديمية

Exploiting DNA methylation in cassava under water deficit for crop improvement.

التفاصيل البيبلوغرافية
العنوان: Exploiting DNA methylation in cassava under water deficit for crop improvement.
المؤلفون: Silva Filho JLBD; Laboratório de Genética Molecular de Plantas, Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil., Pestana RKN; Embrapa Mandioca e Fruticultura, Rua da Embrapa, Cruz das Almas, BA, Brazil., Silva Júnior WJD; Laboratório de Genética Molecular de Plantas, Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil., Coelho Filho MA; Embrapa Mandioca e Fruticultura, Rua da Embrapa, Cruz das Almas, BA, Brazil., Ferreira CF; Embrapa Mandioca e Fruticultura, Rua da Embrapa, Cruz das Almas, BA, Brazil., de Oliveira EJ; Embrapa Mandioca e Fruticultura, Rua da Embrapa, Cruz das Almas, BA, Brazil., Kido EA; Laboratório de Genética Molecular de Plantas, Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil.
المصدر: PloS one [PLoS One] 2024 Feb 22; Vol. 19 (2), pp. e0296254. Date of Electronic Publication: 2024 Feb 22 (Print Publication: 2024).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science
مواضيع طبية MeSH: DNA Methylation* , Manihot*/genetics, Vegetables ; Anxiety ; Candy
مستخلص: DNA methylation plays a key role in the development and plant responses to biotic and abiotic stresses. This work aimed to evaluate the DNA methylation in contrasting cassava genotypes for water deficit tolerance. The varieties BRS Formosa (bitter) and BRS Dourada (sweet) were grown under greenhouse conditions for 50 days, and afterwards, irrigation was suspended. The stressed (water deficit) and non-stressed plants (negative control) consisted the treatments with five plants per variety. The DNA samples of each variety and treatment provided 12 MethylRAD-Seq libraries (two cassava varieties, two treatments, and three replicates). The sequenced data revealed methylated sites covering 18 to 21% of the Manihot esculenta Crantz genome, depending on the variety and the treatment. The CCGG methylated sites mapped mostly in intergenic regions, exons, and introns, while the CCNGG sites mapped mostly intergenic, upstream, introns, and exons regions. In both cases, methylated sites in UTRs were less detected. The differentially methylated sites analysis indicated distinct methylation profiles since only 12% of the sites (CCGG and CCNGG) were methylated in both varieties. Enriched gene ontology terms highlighted the immediate response of the bitter variety to stress, while the sweet variety appears to suffer more potential stress-damages. The predicted protein-protein interaction networks reinforced such profiles. Additionally, the genomes of the BRS varieties uncovered SNPs/INDELs events covering genes stood out by the interactomes. Our data can be useful in deciphering the roles of DNA methylation in cassava drought-tolerance responses and adaptation to abiotic stresses.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Silva Filho et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
References: Plant Cell Environ. 2019 Oct;42(10):2931-2944. (PMID: 31364170)
Sci Total Environ. 2019 Mar 1;654:811-821. (PMID: 30448671)
Plant J. 2011 Feb;65(3):480-91. (PMID: 21265900)
Annu Rev Plant Biol. 2004;55:555-90. (PMID: 15377232)
Science. 2001 May 18;292(5520):1382-5. (PMID: 11337588)
Plant Cell Environ. 2016 Nov;39(11):2440-2459. (PMID: 27411514)
Front Plant Sci. 2017 Jul 18;8:1259. (PMID: 28769962)
Plants (Basel). 2019 Dec 08;8(12):. (PMID: 31817986)
Cell Res. 2011 Mar;21(3):442-65. (PMID: 21321601)
Nat Struct Mol Biol. 2004 Nov;11(11):1068-75. (PMID: 15467727)
J Exp Bot. 2015 Jan;66(1):377-89. (PMID: 25371502)
Bioinformatics. 2010 Mar 1;26(5):589-95. (PMID: 20080505)
PLoS One. 2013;8(1):e54084. (PMID: 23382868)
Bioinformatics. 2016 Jun 1;32(11):1749-51. (PMID: 26826718)
Sci Rep. 2018 Feb 14;8(1):2971. (PMID: 29445121)
Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
BMC Plant Biol. 2010 Aug 27;10:193. (PMID: 20799971)
Plant Cell. 2011 Oct;23(10):3610-26. (PMID: 21972261)
Curr Opin Plant Biol. 2009 Apr;12(2):133-9. (PMID: 19179104)
BMC Bioinformatics. 2017 Oct 13;18(1):453. (PMID: 29029625)
Front Plant Sci. 2020 Dec 16;11:608589. (PMID: 33391323)
Cold Spring Harb Perspect Biol. 2012 Jul 01;4(7):a013706. (PMID: 22751155)
Biochim Biophys Acta. 2007 May-Jun;1769(5-6):276-86. (PMID: 17341434)
Gene. 2003 Aug 14;313:17-42. (PMID: 12957375)
Cell. 2009 Mar 20;136(6):1005-16. (PMID: 19303845)
Nat Genet. 2003 May;34(1):65-9. (PMID: 12669067)
Theor Appl Genet. 2021 May;134(5):1343-1362. (PMID: 33575821)
Physiol Plant. 2021 Jun;172(2):684-695. (PMID: 33159351)
Front Plant Sci. 2019 Feb 28;10:243. (PMID: 30873202)
Plant Cell. 2013 Oct;25(10):3640-56. (PMID: 24179132)
Plant Cell Rep. 2020 May;39(5):621-634. (PMID: 32107612)
J Agric Food Chem. 2019 Mar 27;67(12):3521-3534. (PMID: 30830777)
Crit Rev Biotechnol. 2007 Apr-Jun;27(2):63-75. (PMID: 17578703)
Crit Rev Food Sci Nutr. 2016 Dec 9;56(16):2714-27. (PMID: 26165549)
Mol Plant. 2016 Jun 6;9(6):826-36. (PMID: 27045817)
J Biol. 2010;9(1):6. (PMID: 20236444)
Plant Physiol. 2008 Feb;146(2):431-40. (PMID: 18065557)
Fly (Austin). 2012 Apr-Jun;6(2):80-92. (PMID: 22728672)
Bioinformatics. 2014 Mar 1;30(5):614-20. (PMID: 24142950)
Science. 2010 May 14;328(5980):916-9. (PMID: 20395474)
Planta. 2016 Dec;244(6):1185-1199. (PMID: 27485641)
Plant Signal Behav. 2012 Sep 1;7(9):1095-102. (PMID: 22899071)
Plant J. 2010 Mar;61(6):1041-52. (PMID: 20409277)
PLoS One. 2008 Jun 11;3(6):e2410. (PMID: 18545667)
Mol Cell. 2014 May 8;54(3):418-30. (PMID: 24726328)
Plant J. 2013 Aug;75(3):377-89. (PMID: 23582042)
J Biol Chem. 2002 Sep 6;277(36):32978-84. (PMID: 12089153)
BMC Genomics. 2019 Mar 13;20(1):214. (PMID: 30866814)
Genes Dev. 2003 Feb 15;17(4):461-75. (PMID: 12600940)
Nat Cell Biol. 2005 Apr;7(4):387-91. (PMID: 15793566)
Plant Sci. 2012 Aug;191-192:24-34. (PMID: 22682562)
Nat Rev Genet. 2008 Jun;9(6):465-76. (PMID: 18463664)
Nat Rev Genet. 2022 Feb;23(2):104-119. (PMID: 34561623)
Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
Cell. 1996 Jul 12;86(1):115-21. (PMID: 8689678)
Plant J. 2015 Nov;84(3):545-57. (PMID: 26358508)
PLoS One. 2011 Jan 18;6(1):e14524. (PMID: 21267076)
Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2262-7. (PMID: 11226227)
Front Physiol. 2013 May 10;4:93. (PMID: 23717282)
Mol Biol Rep. 2013 Mar;40(3):2107-14. (PMID: 23184005)
Biomolecules. 2019 Jun 09;9(6):. (PMID: 31181827)
Plants (Basel). 2021 May 30;10(6):. (PMID: 34070712)
Chemosphere. 2021 May;271:129562. (PMID: 33453481)
Front Plant Sci. 2016 Nov 08;7:1675. (PMID: 27877189)
Int J Mol Sci. 2018 Jul 23;19(7):. (PMID: 30041459)
تواريخ الأحداث: Date Created: 20240222 Date Completed: 20240226 Latest Revision: 20240226
رمز التحديث: 20240226
مُعرف محوري في PubMed: PMC10883565
DOI: 10.1371/journal.pone.0296254
PMID: 38386677
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-6203
DOI:10.1371/journal.pone.0296254