دورية أكاديمية

Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development.

التفاصيل البيبلوغرافية
العنوان: Leaf and shoot apical meristem transcriptomes of quinoa (Chenopodium quinoa Willd.) in response to photoperiod and plant development.
المؤلفون: Maldonado-Taipe N; Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany., Rey E; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia., Tester M; Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia., Jung C; Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany., Emrani N; Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany.
المصدر: Plant, cell & environment [Plant Cell Environ] 2024 Jun; Vol. 47 (6), pp. 2027-2043. Date of Electronic Publication: 2024 Feb 23.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Ltd Country of Publication: United States NLM ID: 9309004 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-3040 (Electronic) Linking ISSN: 01407791 NLM ISO Abbreviation: Plant Cell Environ Subsets: MEDLINE
أسماء مطبوعة: Publication: Hoboken, NJ : John Wiley & Sons Ltd.
Original Publication: Oxford, UK : Blackwell Scientific Publications
مواضيع طبية MeSH: Chenopodium quinoa*/genetics , Chenopodium quinoa*/growth & development , Chenopodium quinoa*/physiology , Meristem*/genetics , Meristem*/growth & development , Photoperiod* , Plant Leaves*/genetics , Plant Leaves*/growth & development , Transcriptome*/genetics , Gene Expression Regulation, Plant*, Flowers/genetics ; Flowers/growth & development ; Plant Shoots/genetics ; Plant Shoots/growth & development ; Plant Proteins/genetics ; Plant Proteins/metabolism ; Gene Expression Profiling
مستخلص: Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.
(© 2024 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.)
References: Adamczyk, B.J., Lehti‐Shiu, M.D. & Fernandez, D.E. (2007) The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant Journal, 50(6), 1007–1019.
Alandia, G., Rodriguez, J.P., Jacobsen, S.‐E., Bazile, D. & Condori, B. (2020) Global expansion of quinoa and challenges for the Andean region. Global Food Security, 26, 100429.
Almeida‐Silva, F. & Venancio, T.M. (2022) BioNERO: an all‐in‐one R/bioconductor package for comprehensive and easy biological network reconstruction. Functional & Integrative Genomics, 22(1), 131–136.
Bäurle, I. & Dean, C. (2006) The timing of developmental transitions in plants. Cell, 125(4), 655–664.
Blázquez, M.A. & Weigel, D. (1999) Independent regulation of flowering by phytochrome B and gibberellins in Arabidopsis. Plant Physiology, 120(4), 1025–1032.
Boyle, E.A., Li, Y.I. & Pritchard, J.K. (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell, 169(7), 1177–1186.
Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C. et al. (2009) The genetic architecture of maize flowering time. Science, 325(5941), 714–718.
Camejo, D., Rodríguez, P., Angeles Morales, M., Miguel Dell'Amico, J., Torrecillas, A. & Alarcón, J.J. (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162(3), 281–289.
Cháb, D., Kolář, J., Olson, M.S. & Štorchová, H. (2008) Two FLOWERING LOCUS T (FT) homologs in Chenopodium rubrum differ in expression patterns. Planta, 228(6), 929–940.
Chen, L., Nan, H., Kong, L., Yue, L., Yang, H., Zhao, Q. et al. (2020) Soybean AP1 homologs control flowering time and plant height. Journal of Integrative Plant Biology, 62(12), 1868–1879.
Chen, Y., McCarthy, D., Ritchie, M., Robinson, M., Smyth, G. & Hall, E. (2020) edgeR: differential analysis of sequence read count data user's guide. Bioinformatics, 26(1), 139–140.
Cho, L.H., Yoon, J. & An, G. (2017) The control of flowering time by environmental factors. The Plant Journal, 90(4), 708–719.
Choi, K., Kim, J., Hwang, H.‐J., Kim, S., Park, C., Kim, S.Y. et al. (2011) The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell, 23(1), 289–303.
Debernardi, J.M., Greenwood, J.R., Jean Finnegan, E., Jernstedt, J. & Dubcovsky, J. (2020) APETALA 2‐like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat. The Plant Journal: For Cell and Molecular Biology, 101(1), 171–187.
Díaz‐Valenzuela, E., Hernández‐Ríos, D. & Cibrián‐Jaramillo, A. (2023) The role of non‐additive gene action on gene expression variation in plant domestication. EvoDevo, 14(1), 3.
Drabešová, J., Cháb, D., Kolář, J., Haškovcová, K. & Štorchová, H. (2014) A dark–light transition triggers expression of the floral promoter CrFTL1 and downregulates CONSTANS‐like genes in a short‐day plant Chenopodium rubrum. Journal of Experimental Botany, 65(8), 2137–2146.
Dun, E.A., Ferguson, B.J. & Beveridge, C.A. (2006) Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant Physiology, 142(3), 812–819.
Fuller, H.J. (1949) Photoperiodic responses of Chenopodium quinoa Willd. and Amaranthus caudatus L. American Journal of Botany, 36, 175–180.
Gaudinier, A. & Blackman, B.K. (2020) Evolutionary processes from the perspective of flowering time diversity. New Phytologist, 225(5), 1883–1898.
Golicz, A.A., Steinfort, U., Arya, H., Singh, M.B. & Bhalla, P.L. (2020) Analysis of the quinoa genome reveals conservation and divergence of the flowering pathways. Functional & Integrative Genomics, 20(2), 245–258.
Gotz, S., Garcia‐Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J. et al. (2008) High‐throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36(10), 3420–3435.
Granado‐Rodríguez, S., Aparicio, N., Matías, J., Pérez‐Romero, L.F., Maestro, I., Gracés, I. et al. (2021) Studying the impact of different field environmental conditions on seed quality of quinoa: the case of three different years changing seed nutritional traits in Southern Europe. Frontiers in Plant Science, 12:649132. https://doi.org/10.3389/fpls.2021.649132.
Gutierrez‐Larruscain, D., Krüger, M., Abeyawardana, O.A.J., Belz, C., Dobrev, P.I., Vaňková, R. et al. (2022) The transcriptomic (RNA‐sequencing) datasets collected in the course of floral induction in Chenopodium ficifolium 459. Data in Brief, 43, 108333.
Higuchi, Y. & Hisamatsu, T. (2015) CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum. Plant Science, 237, 1–7.
Hu, Y., Liang, W., Yin, C., Yang, X., Ping, B., Li, A. et al. (2015) Interactions of OsMADS1 with floral homeotic genes in rice flower development. Molecular Plant, 8(9), 1366–1384.
Iqbal, S., Basra, S., Saddiq, M.S., Yang, A., Akhtar, S.S. & Jacobsen, S.‐E. (2020) The extraordinary salt tolerance of quinoa. In: Hirich, A., Choukr‐Allah, R. & Ragab, R. (Eds.) Emerging research in alternative crops. Environment & Policy, vol. 58. Cham: Springer, pp. 125–143. https://doi.org/10.1007/978-3-319-90472-6_5.
Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., Schmöckel, S.M., Li, B., Borm, T.J.A. et al. (2017) The genome of Chenopodium quinoa. Nature, 542(7641), 307–312.
Kanehisa, M. (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30.
Kiani‐Pouya, A., Li, L., Rasouli, F., Zhang, Z., Chen, J., Yu, M. et al. (2022) Transcriptome analyses of quinoa leaves revealed critical function of epidermal bladder cells in salt stress acclimation. Plant Stress, 3, 100061.
Kim, D., Langmead, B. & Salzberg, S.L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4), 357–360.
Kim, S.‐K., Yun, C.‐H., Lee, J.H., Jang, Y.H., Park, H.‐Y. & Kim, J.‐K. (2008) OsCO3, a CONSTANS‐LIKE gene, controls flowering by negatively regulating the expression of FT‐like genes under SD conditions in rice. Planta, 228(2), 355–365.
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S. & Shimamoto, K. (2008) Hd3a and RFT1 are essential for flowering in rice. Development, 135(4), 767–774.
Langfelder, P. & Horvath, S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9(1), 559.
Langmead, B. & Salzberg, S.L. (2012) Fast gapped‐read alignment with Bowtie 2. Nature Methods, 9(4), 357–359.
Lee, J. & Lee, I. (2010) Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany, 61(9), 2247–2254.
Li, B. & Dewey, C.N. (2011) RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome. BMC Bioinformatics, 12, 323.
Liu, L., Li, C., Song, S., Teo, Z.W.N., Shen, L., Wang, Y. et al. (2018) FTIP‐dependent STM trafficking regulates shoot meristem development in Arabidopsis. Cell Reports, 23(6), 1879–1890.
Livak, K.J. & Schmittgen, T.D. (2001) Analysis of relative gene expression data using real‐time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.
Lutz, U., Posé, D., Pfeifer, M., Gundlach, H., Hagmann, J., Wang, C. et al. (2015) Modulation of ambient temperature‐dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M. PLoS Genetics, 11(10), e1005588.
Maldonado‐Taipe, N., Barbier, F., Schmid, K., Jung, C. & Emrani, N. (2022) High‐density mapping of quantitative trait loci controlling agronomically important traits in quinoa (Chenopodium quinoa Willd.). Frontiers in Plant Science, 13, 13.
Maldonado‐Taipe, N., Patirange, D.S.R., Schmöckel, S.M., Jung, C. & Emrani, N. (2021) Validation of suitable genes for normalization of diurnal gene expression studies in Chenopodium quinoa. PloS one, 16(3), e0233821.
Más, P., Kim, W.‐Y., Somers, D.E. & Kay, S.A. (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 426(6966), 567–570.
Mathieson, I. (2021) The omnigenic model and polygenic prediction of complex traits. The American Journal of Human Genetics, 108(9), 1558–1563.
Murai, K., Miyamae, M., Kato, H., Takumi, S. & Ogihara, Y. (2003) WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant and Cell Physiology, 44(12), 1255–1265.
Murphy, K.M., Matanguihan, J.B., Fuentes, F.F., Gómez‐Pando, L.R., Jellen, E.N., Maughan, P.J. et al. (2018) Quinoa breeding and genomics. Plant Breeding Reviews, 42, 257–320.
Mutasa‐Göttgens, E.S., Joshi, A., Holmes, H.F., Hedden, P. & Göttgens, B. (2012) A new RNASeq‐based reference transcriptome for sugar beet and its application in transcriptome‐scale analysis of vernalization and gibberellin responses. BMC Genomics, 13, 99.
Ogata, T., Toyoshima, M., Yamamizo‐Oda, C., Kobayashi, Y., Fujii, K., Tanaka, K. et al. (2021) Virus‐mediated transient expression techniques enable functional genomics studies and modulations of betalain biosynthesis and plant height in quinoa. Frontiers in Plant Science, 12, 12.
Patiranage, D.S., Asare, E., Maldonado‐Taipe, N., Rey, E., Emrani, N. & Tester, M. et al. (2021) Haplotype variations of major flowering time genes in quinoa unveil their role in the adaptation to different environmental conditions. Plant, Cell & Environment, 44(8), 2565–2579.
Patiranage, D.S., Rey, E., Emrani, N., Wellman, G., Schmid, K., Schmöckel, S.M. et al. (2022) Genome‐wide association study in quinoa reveals selection pattern typical for crops with a short breeding history. eLife, 11, e66873.
Pertea, G. & Pertea, M. (2020) GFF utilities: GffRead and GffCompare. Research; A Journal of Science and its Applications, 9, 304.
Pertea, M., Kim, D., Pertea, G.M., Leek, J.T. & Salzberg, S.L. (2016) Transcript‐level expression analysis of RNA‐seq experiments with HISAT, StringTie and Ballgown. Nature Protocols, 11(9), 1650–1667.
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.‐C., Mendell, J.T. & Salzberg, S.L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA‐seq reads. Nature Biotechnology, 33(3), 290–295.
Pin, P.A., Benlloch, R., Bonnet, D., Wremerth‐Weich, E., Kraft, T., Gielen, J.J.L. et al. (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science, 330(6009), 1397–1400.
Putterill, J. & Varkonyi‐Gasic, E. (2016) FT and florigen long‐distance flowering control in plants. Current Opinion in Plant Biology, 33, 77–82.
Rey, E., Maughan, P.J., Maumus, F., Lewis, D., Wilson, L., Fuller, J. et al. (2023) A chromosome‐scale assembly of the quinoa genome provides insights into the structure and dynamics of its subgenomes. Communications Biology, 6(1), 1263.
Robinson, M.D. & Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biology, 11(3), R25.
Scortecci, K.C., Michaels, S.D. & Amasino, R.M. (2001) Identification of a MADS‐box gene, FLOWERING LOCUS M, that represses flowering. The Plant Journal, 26(2), 229–236.
Shim, Y., Lim, C., Seong, G., Choi, Y., Kang, K. & Paek, N.C. (2022) The AP2/ERF transcription factor LATE FLOWERING SEMI‐DWARF suppresses long‐day‐dependent repression of flowering. Plant, Cell & Environment, 45(8), 2446–2459.
Song, Y.H., Shim, J.S., Kinmonth‐Schultz, H.A. & Imaizumi, T. (2015) Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology, 66, 441–464.
Sosa‐Zuniga, V., Brito, V., Fuentes, F. & Steinfort, U. (2017) Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology, 171(1), 117–124.
Sowiński, P., Fronk, J., Jończyk, M., Grzybowski, M., Kowalec, P. & Sobkowiak, A. (2020) Maize response to low temperatures at the gene expression level: a critical survey of transcriptomic studies. Frontiers in Plant Science, 11, 576941.
Stanschewski, C.S., Rey, E., Fiene, G., Craine, E.B., Wellman, G., Melino, V.J. et al. (2021) Quinoa phenotyping methodologies: an international consensus. Plants, 10(9), 1759.
Štorchová, H., Drabešová, J., Cháb, D., Kolář, J. & Jellen, E.N. (2015) The introns in FLOWERING LOCUS T‐LIKE (FTL) genes are useful markers for tracking paternity in tetraploid Chenopodium quinoa Willd. Genetic Resources and Crop Evolution, 62, 913–925.
Suárez‐López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. & Coupland, G. (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116–1120.
Tautz, D., Reeves, G. & Pallares, L.F. (2020) New experimental support for long standing concepts of polygenic genetics implies that the Mendelian genetic paradigm needs to be revised: the new (old) genetics, version 1.0. NAL‐Live, 2020(1), 1–15.
Tian, H., Li, Y., Wang, C., Xu, X., Zhang, Y., Zeb, Q. et al. (2021) Photoperiod‐responsive changes in chromatin accessibility in phloem companion and epidermis cells of Arabidopsis leaves. The Plant Cell, 33(3), 475–491.
Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A. & Coupland, G. (2004) Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science (New York, N.Y.), 303(5660), 1003–1006.
Wang, Q., Zuo, Z., Wang, X., Gu, L., Yoshizumi, T., Yang, Z. et al. (2016) Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science, 354(6310), 343–347.
Wu, M.‐F. & Wagner, D. (2012) RNA in situ hybridization in Arabidopsis. In: Jin, H. & Gassmann, W. (Eds.) RNA abundance analysis. Methods in Molecular Biology, vol. 883. Totowa, NJ: Humana Press, pp. 75–86. https://doi.org/10.1007/978-1-61779-839-9_5.
Wu, Q., Bai, X., Luo, Y., Li, L., Nie, M., Liu, C. et al. (2023) Identification of the global diurnal rhythmic transcripts, transcription factors and time‐of‐day specific cis elements in Chenopodium quinoa. BMC Plant Biology, 23(1), 96.
Wu, Q., Luo, Y., Wu, X., Bai, X., Ye, X., Liu, C. et al. (2021) Identification of the specific long‐noncoding RNAs involved in night‐break mediated flowering retardation in Chenopodium quinoa. BMC Genomics, 22(1), 284.
Zheng, L., Zhao, Y., Gan, Y., Li, H., Luo, S., Liu, X. et al. (2022) Full‐length transcriptome sequencing reveals the impact of cold stress on alternative splicing in quinoa. International Journal of Molecular Sciences, 23(10), 5724.
معلومات مُعتمدة: King Abdullah University of Science and Technology; Stiftung Schleswig-Holsteinische Landschaft
فهرسة مساهمة: Keywords: RNA‐seq; day length; differentially expressed genes; floral transition; transcriptomics
المشرفين على المادة: 0 (Plant Proteins)
تواريخ الأحداث: Date Created: 20240223 Date Completed: 20240429 Latest Revision: 20240429
رمز التحديث: 20240429
DOI: 10.1111/pce.14864
PMID: 38391415
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-3040
DOI:10.1111/pce.14864