دورية أكاديمية

Role of Wisteria floribunda agglutinin binding glycans in carcinogenesis and metastasis of cholangiocarcinoma.

التفاصيل البيبلوغرافية
العنوان: Role of Wisteria floribunda agglutinin binding glycans in carcinogenesis and metastasis of cholangiocarcinoma.
المؤلفون: Phuyathip W; Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand., Putthisen S; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Panawan O; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Ma-In P; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Teeravirote K; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Sintusen P; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Udomkitkosol S; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Detarya M; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Luang S; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand., Mahalapbutr P; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand., Sato T; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan., Kuno A; Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8565, Japan., Chuangchaiya S; Department of Community Health, Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand. sriwipa.c@ku.th., Silsirivanit A; Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. atitsil@kku.ac.th.; Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand. atitsil@kku.ac.th.
المصدر: Histochemistry and cell biology [Histochem Cell Biol] 2024 May; Vol. 161 (5), pp. 423-434. Date of Electronic Publication: 2024 Feb 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9506663 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-119X (Electronic) Linking ISSN: 09486143 NLM ISO Abbreviation: Histochem Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer,
مواضيع طبية MeSH: Cholangiocarcinoma*/metabolism , Cholangiocarcinoma*/pathology , Bile Duct Neoplasms*/metabolism , Bile Duct Neoplasms*/pathology , Plant Lectins*/metabolism , Polysaccharides*/metabolism , Polysaccharides*/chemistry , Receptors, N-Acetylglucosamine*/metabolism, Animals ; Humans ; Cricetinae ; Male ; Carcinogenesis/metabolism ; Carcinogenesis/pathology ; Neoplasm Metastasis ; Female ; Middle Aged ; Cell Movement/drug effects
مستخلص: Aberrant glycosylation is an important factor in facilitating tumor progression and therapeutic resistance. In this study, using Wisteria floribunda agglutinin (WFA), we examined the expression of WFA-binding glycans (WFAG) in cholangiocarcinoma (CCA). The results showed that WFAG was highly detected in precancerous and cancerous lesions of human CCA tissues, although it was rarely detected in normal bile ducts. The positive signal of WFAG in the cancerous lesion accounted for 96.2% (50/52) of the cases. Overexpression of WFAG was significantly associated with lymph node and distant metastasis (P < 0.05). The study using the CCA hamster model showed that WFAG is elevated in preneoplastic and neoplastic bile ducts as early as 1 month after being infected with liver fluke and exposed to N-nitrosodimethylamine. Functional analysis was performed to reveal the role of WFAG in CCA. The CCA cell lines KKU-213A and KKU-213B were treated with WFA, followed by migration assay. Our data suggested that WFAG facilitates the migration of CCA cells via the activation of the Akt and ERK signaling pathways. In conclusion, we have demonstrated the association of WFAG with carcinogenesis and metastasis of CCA, suggesting its potential as a target for the treatment of the disease.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Bojar D, Meche L, Meng G, Eng W, Smith DF, Cummings RD, Mahal LK (2022) A useful guide to lectin binding: machine-learning directed annotation of 57 unique lectin specificities. ACS Chem Biol 17(11):2993–3012. https://doi.org/10.1021/acschembio.1c00689. (PMID: 10.1021/acschembio.1c00689350848209679999)
Che MI, Huang J, Hung JS, Lin YC, Huang MJ, Lai HS, Hsu WM, Liang JT, Huang MC (2014) beta1, 4-N-acetylgalactosaminyltransferase III modulates cancer stemness through EGFR signaling pathway in colon cancer cells. Oncotarget 5(11):3673–3684. https://doi.org/10.18632/oncotarget.1981. (PMID: 10.18632/oncotarget.1981250032324116512)
Detarya M, Sawanyawisuth K, Aphivatanasiri C, Chuangchaiya S, Saranaruk P, Sukprasert L, Silsirivanit A, Araki N, Wongkham S, Wongkham C (2020) The O-GalNAcylating enzyme GALNT5 mediates carcinogenesis and progression of cholangiocarcinoma via activation of AKT/ERK signaling. Glycobiology 30(5):312–324. https://doi.org/10.1093/glycob/cwz098. (PMID: 10.1093/glycob/cwz09831868214)
Detarya M, Lert-Itthiporn W, Mahalapbutr P, Klaewkla M, Sorin S, Sawanyawisuth K, Silsirivanit A, Seubwai W, Wongkham C, Araki N, Wongkham S (2022) Emerging roles of GALNT5 on promoting EGFR activation in cholangiocarcinoma: a mechanistic insight. Am J Cancer Res 12(9):4140–4159. (PMID: 362256339548001)
Fedchenko N, Reifenrath J (2014) Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol 9:221. https://doi.org/10.1186/s13000-014-0221-9. (PMID: 10.1186/s13000-014-0221-9254327014260254)
Haji-Ghassemi O, Gilbert M, Spence J, Schur MJ, Parker MJ, Jenkins ML, Burke JE, van Faassen H, Young NM, Evans SV (2016) Molecular basis for recognition of the cancer glycobiomarker, LacdiNAc (GalNAc[beta1–>4]GlcNAc), by Wisteria floribunda Agglutinin. J Biol Chem 291(46):24085–24095. https://doi.org/10.1074/jbc.M116.750463. (PMID: 10.1074/jbc.M116.750463276014695104934)
Hirano K, Furukawa K (2022) Biosynthesis and biological significances of LacdiNAc group on N- and O-Glycans in human cancer cells. Biomolecules. https://doi.org/10.3390/biom12020195. (PMID: 10.3390/biom12020195354541119025540)
Hsu WM, Che MI, Liao YF, Chang HH, Chen CH, Huang YM, Jeng YM, Huang J, Quon MJ, Lee H, Huang HC, Huang MC (2011) B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via beta(1) integrin signaling in neuroblastoma. Am J Pathol 179(3):1394–1404. https://doi.org/10.1016/j.ajpath.2011.05.025. (PMID: 10.1016/j.ajpath.2011.05.025217419303157223)
Huang J, Liang JT, Huang HC, Shen TL, Chen HY, Lin NY, Che MI, Lin WC, Huang MC (2007) Beta 1,4-N-acetylgalactosaminyltransferase III enhances malignant phenotypes of colon cancer cells. Mol Cancer Res 5(6):543–552. https://doi.org/10.1158/1541-7786.MCR-06-0431. (PMID: 10.1158/1541-7786.MCR-06-043117579116)
Indramanee S, Silsirivanit A, Pairojkul C, Wongkham C, Wongkham S (2012) Aberrant glycosylation in cholangiocarcinoma demonstrated by lectin-histochemistry. Asian Pac J Cancer Prev 13(Suppl):119–124. (PMID: 23480752)
Indramanee S, Sawanyawisuth K, Silsirivanit A, Dana P, Phoomak C, Kariya R, Klinhom-On N, Sorin S, Wongkham C, Okada S, Wongkham S (2019) Terminal fucose mediates progression of human cholangiocarcinoma through EGF/EGFR activation and the Akt/Erk signaling pathway. Sci Rep 9(1):17266. https://doi.org/10.1038/s41598-019-53601-8. (PMID: 10.1038/s41598-019-53601-8317542446872661)
Kailemia MJ, Park D, Lebrilla CB (2017) Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem 409(2):395–410. https://doi.org/10.1007/s00216-016-9880-6. (PMID: 10.1007/s00216-016-9880-627590322)
Kuno A, Ikehara Y, Tanaka Y, Ito K, Matsuda A, Sekiya S, Hige S, Sakamoto M, Kage M, Mizokami M, Narimatsu H (2013) A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep 3(1):1065. https://doi.org/10.1038/srep01065. (PMID: 10.1038/srep01065233232093545220)
Li J, Zhao T, Li J, Shen J, Jia L, Zhu B, Dang L, Ma C, Liu D, Mu F, Hu L, Sun S (2022) Precision N-glycoproteomics reveals elevated LacdiNAc as a novel signature of intrahepatic cholangiocarcinoma. Mol Oncol 16(11):2135–2152. https://doi.org/10.1002/1878-0261.13147. (PMID: 10.1002/1878-0261.1314734855283)
Maruyama M, Kobayashi N, Westerman KA, Sakaguchi M, Allain JE, Totsugawa T, Okitsu T, Fukazawa T, Weber A, Stolz DB, Leboulch P, Tanaka N (2004) Establishment of a highly differentiated immortalized human cholangiocyte cell line with SV40T and hTERT. Transplantation 77(3):446–451. https://doi.org/10.1097/01.Tp.0000110292.73873.25. (PMID: 10.1097/01.Tp.0000110292.73873.2514966424)
Matsuda A, Kuno A, Kawamoto T, Matsuzaki H, Irimura T, Ikehara Y, Zen Y, Nakanuma Y, Yamamoto M, Ohkohchi N, Shoda J, Hirabayashi J, Narimatsu H (2010) Wisteria floribunda agglutinin-positive mucin 1 is a sensitive biliary marker for human cholangiocarcinoma. Hepatology 52(1):174–182. https://doi.org/10.1002/hep.23654. (PMID: 10.1002/hep.2365420578261)
Matsuda A, Kuno A, Nakagawa T, Ikehara Y, Irimura T, Yamamoto M, Nakanuma Y, Miyoshi E, Nakamori S, Nakanishi H, Viwatthanasittiphong C, Srivatanakul P, Miwa M, Shoda J, Narimatsu H (2015) Lectin microarray-based sero-Biomarker verification targeting aberrant O-linked glycosylation on mucin 1. Anal Chem 87(14):7274–7281. https://doi.org/10.1021/acs.analchem.5b01329. (PMID: 10.1021/acs.analchem.5b0132926091356)
Matsuda A, Higashi M, Nakagawa T, Yokoyama S, Kuno A, Yonezawa S, Narimatsu H (2017) Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. Lab Invest 97(9):1103–1113. https://doi.org/10.1038/labinvest.2017.53. (PMID: 10.1038/labinvest.2017.5328581490)
Munkley J, Elliott DJ (2016) Hallmarks of glycosylation in cancer. Oncotarget 7(23):35478–35489. https://doi.org/10.18632/oncotarget.8155. (PMID: 10.18632/oncotarget.8155270071555085245)
Narimatsu H, Sato T (2018) Wisteria floribunda agglutinin positive glycobiomarkers: a unique lectin as a serum biomarker probe in various diseases. Expert Rev Proteomics 15(2):183–190. https://doi.org/10.1080/14789450.2018.1419066. (PMID: 10.1080/14789450.2018.141906629265940)
Narimatsu Y, Kuno A, Ito H, Kaji H, Kaneko S, Usui J, Yamagata K, Narimatsu H (2014) IgA nephropathy caused by unusual polymerization of IgA1 with aberrant N-Glycosylation in a patient with monoclonal immunoglobulin deposition disease. PloS One 9(3):e91079. https://doi.org/10.1371/journal.pone.0091079. (PMID: 10.1371/journal.pone.0091079246518393961232)
Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867. https://doi.org/10.1016/j.cell.2006.08.019. (PMID: 10.1016/j.cell.2006.08.01916959566)
Panawan O, Silsirivanit A, Chang CH, Putthisen S, Boonnate P, Yokota T, Nishisyama-Ikeda Y, Detarya M, Sawanyawisuth K, Kaewkong W, Muisuk K, Luang S, Vaeteewoottacharn K, Kariya R, Yano H, Komohara Y, Ohta K, Okada S, Wongkham S, Araki N (2023) Establishment and characterization of a novel cancer stem-like cell of cholangiocarcinoma. Cancer Sci. https://doi.org/10.1111/cas.15812. (PMID: 10.1111/cas.158123702652710394157)
Poiroux G, Barre A, van Damme EJM, Benoist H, Rouge P (2017) Plant lectins targeting o-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int J Mol Sci. https://doi.org/10.3390/ijms18061232. (PMID: 10.3390/ijms18061232285983695486055)
Prakobwong S, Yongvanit P, Hiraku Y, Pairojkul C, Sithithaworn P, Pinlaor P, Pinlaor S (2010) Involvement of MMP-9 in peribiliary fibrosis and cholangiocarcinogenesis via Rac1-dependent DNA damage in a hamster model. Int J Cancer 127(11):2576–2587. https://doi.org/10.1002/ijc.25266. (PMID: 10.1002/ijc.2526620162672)
Saentaweesuk W, Silsirivanit A, Vaeteewoottacharn K, Sawanyawisuth K, Pairojkul C, Cha’on U, Indramanee S, Pinlaor S, Boonmars T, Araki N, Wongkham C (2018) Clinical significance of GalNAcylated glycans in cholangiocarcinoma: Values for diagnosis and prognosis. Clin Chim Acta 477:66–71. https://doi.org/10.1016/j.cca.2017.12.005. (PMID: 10.1016/j.cca.2017.12.00529217428)
Sato T, Tateno H, Kaji H, Chiba Y, Kubota T, Hirabayashi J, Narimatsu H (2017) Engineering of recombinant Wisteria floribunda agglutinin specifically binding to GalNAcbeta1,4GlcNAc (LacdiNAc). Glycobiology 27(8):743–754. https://doi.org/10.1093/glycob/cwx038. (PMID: 10.1093/glycob/cwx03828549117)
Shin HR, Oh JK, Masuyer E, Curado MP, Bouvard V, Fang YY, Wiangnon S, Sripa B, Hong ST (2010) Epidemiology of cholangiocarcinoma: an update focusing on risk factors. Cancer Sci 101(3):579–585. https://doi.org/10.1111/j.1349-7006.2009.01458.x. (PMID: 10.1111/j.1349-7006.2009.01458.x20085587)
Shoda J, Matsuda A, Shida T, Yamamoto M, Nagino M, Tsuyuguchi T, Yasaka T, Tazuma S, Uchiyama K, Unno M, Ohkohchi N, Nakanuma Y, Kuno A, Narimatsu H (2017) Wisteria floribunda agglutinin-sialylated mucin core polypeptide 1 is a sensitive biomarker for biliary tract carcinoma and intrahepatic cholangiocarcinoma: a multicenter study. J Gastroenterol 52(2):218–228. https://doi.org/10.1007/s00535-016-1230-0. (PMID: 10.1007/s00535-016-1230-027358229)
Silsirivanit A (2019) Glycosylation markers in cancer. Adv Clin Chem 89:189–213. https://doi.org/10.1016/bs.acc.2018.12.005. (PMID: 10.1016/bs.acc.2018.12.00530797469)
Silsirivanit A (2021) Glycans: potential therapeutic targets for cholangiocarcinoma and their therapeutic and diagnostic implications. Expert Opin Ther Targets 25(1):1–4. https://doi.org/10.1080/14728222.2021.1861250. (PMID: 10.1080/14728222.2021.186125033337922)
Silsirivanit A, Araki N, Wongkham C, Pairojkul C, Narimatsu Y, Kuwahara K, Narimatsu H, Wongkham S, Sakaguchi N (2011) A novel serum carbohydrate marker on mucin 5AC: values for diagnostic and prognostic indicators for cholangiocarcinoma. Cancer 117(15):3393–3403. https://doi.org/10.1002/cncr.25912. (PMID: 10.1002/cncr.2591221287531)
Silsirivanit A, Phoomak C, Wongkham S (2021) Glycosylation in cholangiocarcinoma development and metastasis: diagnostic and therapeutic considerations. In: Tabibian, J.H. (eds) Diagnosis and management of cholangiocarcinoma: a multidisciplinary approach. Springer, Cham, pp 527–553. https://doi.org/10.1007/978-3-030-70936-5&#95;25. (PMID: 10.1007/978-3-030-70936-5_25)
Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230(1):97–113. https://doi.org/10.1111/j.1600-065X.2009.00795.x. (PMID: 10.1111/j.1600-065X.2009.00795.x195946312745114)
Sripa B, Pairojkul C (2008) Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 24(3):349–356. https://doi.org/10.1097/MOG.0b013e3282fbf9b3. (PMID: 10.1097/MOG.0b013e3282fbf9b3184084644130346)
Sripa B, Seubwai W, Vaeteewoottacharn K, Sawanyawisuth K, Silsirivanit A, Kaewkong W, Muisuk K, Dana P, Phoomak C, Lert-Itthiporn W, Luvira V, Pairojkul C, Teh BT, Wongkham S, Okada S, Chamgramol Y (2020) Functional and genetic characterization of three cell lines derived from a single tumor of an Opisthorchis viverrini-associated cholangiocarcinoma patient. Hum Cell 33(3):695–708. https://doi.org/10.1007/s13577-020-00334-w. (PMID: 10.1007/s13577-020-00334-w32207095)
Teeravirote K, Sutthanut K, Thonsri U, Mahalapbutr P, Seubwai W, Luang S, Tippayawat P, Kanthawong S, Pipattanaboon C, Duangjinda M, Chankitisakul V, Silsirivanit A (2022) Anserine/Carnosine-rich extract from Thai Native chicken suppresses melanogenesis via activation of ERK signaling pathway. Molecules. https://doi.org/10.3390/molecules27217440. (PMID: 10.3390/molecules27217440363642679659164)
Titapun A, Pugkhem A, Luvira V, Srisuk T, Somintara O, Saeseow OT, Sripanuskul A, Nimboriboonporn A, Thinkhamrop B, Khuntikeo N (2015) Outcome of curative resection for perihilar cholangiocarcinoma in Northeast Thailand. World J Gastrointest Oncol 7(12):503–512. https://doi.org/10.4251/wjgo.v7.i12.503. (PMID: 10.4251/wjgo.v7.i12.503266917304678397)
Wang Y, Li K, Zhao W, Liu Z, Liu J, Shi A, Chen T, Mu W, Xu Y, Pan C, Zhang Z (2021) Aldehyde dehydrogenase 3B2 promotes the proliferation and invasion of cholangiocarcinoma by increasing Integrin Beta 1 expression. Cell Death Dis 12(12):1158. https://doi.org/10.1038/s41419-021-04451-8. (PMID: 10.1038/s41419-021-04451-8349071798671409)
معلومات مُعتمدة: Graduate School Fellowship Program Graduate School, Kasetsart University; Fundamental Fund 65 Khon Kaen University
فهرسة مساهمة: Keywords: Cholangiocarcinoma; Glycosylation; Lectin
المشرفين على المادة: 0 (Plant Lectins)
0 (Polysaccharides)
0 (Receptors, N-Acetylglucosamine)
0 (wisteria lectin)
تواريخ الأحداث: Date Created: 20240223 Date Completed: 20240425 Latest Revision: 20240425
رمز التحديث: 20240426
DOI: 10.1007/s00418-024-02270-4
PMID: 38393396
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-119X
DOI:10.1007/s00418-024-02270-4