دورية أكاديمية

Comparative light and scanning electron microscopic studies of the lenses in the insectivorous bat (Pipistrellus kuhlii) and Egyptian fruit bat (Rousettus aegyptiacus).

التفاصيل البيبلوغرافية
العنوان: Comparative light and scanning electron microscopic studies of the lenses in the insectivorous bat (Pipistrellus kuhlii) and Egyptian fruit bat (Rousettus aegyptiacus).
المؤلفون: Aboelnour A; Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt., Gewaily MS; Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt., Noreldin AE; Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.
المصدر: Microscopy research and technique [Microsc Res Tech] 2024 Jul; Vol. 87 (7), pp. 1436-1442. Date of Electronic Publication: 2024 Feb 24.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 9203012 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0029 (Electronic) Linking ISSN: 1059910X NLM ISO Abbreviation: Microsc Res Tech Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Wiley-Liss, c1992-
مواضيع طبية MeSH: Chiroptera*/anatomy & histology , Microscopy, Electron, Scanning* , Lens, Crystalline*/ultrastructure, Animals ; Microscopy/methods ; Egypt ; Epithelial Cells/ultrastructure
مستخلص: Bats have the ability to fly without eye application in the darkness. In this study, we aimed to characterize the functional and structural acclimations of the lenses of two common bats with a various lifestyle in the Egyptian environment: the insectivorous bat (IB) (Pipistrellus kuhlii) and Egyptian fruit bat (FB) (Rousettus aegyptiacus). From each species, seven lenses were extracted from adult eyes. The scanning electron microscopic (SEM) and light microscopic examination of the lens were carried out. FB lenses were made up primarily of fiber cells and sheets, which were encapsulated by a thin collagenous capsule and covered by single epithelial layer anteriorly. On the other hand, the IB lens had two poles and was visibly oval shaped. Both lenses had epithelial cells of the same cuboidal form that were subjected to continuous division and differentiation into new fiber cells at the center. SEM revealed that the normal FB lens had regularly organized shells of fiber cells of intact lens fibers which were connected by membrane interdigitations with different shapes mainly ball-and-socket junctions through the superficial cortical fiber cells. The IB lens was composed of parallel, evenly spaced fibers with various types of interdigitations between fibers that can be seen and increased close to the middle region revealing tiny bumps along the scrubby portions and sockets and balls in the center of the wide portions. Near the center of both lenses, there were large interlocking paddles with little and lengthy protrusions along their short sides. In conclusion, our study discovered several ultrastructural and structural variations among the investigated species. The detection of specialized membrane interdigitations with different shapes protruding from the lens fiber sheets is considered the most characteristic of the FB lens. RESEARCH HIGHLIGHTS: FB lens has more organized sheets of fibers parallel to each other than IB lens. Different shapes of interdigitations protruded from the FB lens have been detected. Interlocking paddles, balls, and sockets with tongue-like fiber flabs are characteristic to FB lens.
(© 2024 Wiley Periodicals LLC.)
References: Abumandour, M., & Pérez, W. (2017). Morphological and scanning electron microscopy studies of the stomach of the Egyptian fruit bat (Rousettus aegyptiacus). International Journal of Morphology, 35(1), 242–250.
Akat, E., & Arikan, H. (2013). A histological study of the eye in Hyla orientalis (Bedriaga, 1890) (Anura, Hylidae). Biharean Biologist, 7(2), 61–63.
Al‐Ghoul, K., & Costello, M. (1997). Light microscopic variation of fiber cell size, shape and ordering in the equatorial plane of bovine and human lenses. Molecular Vision, 3(2).
Altringham, J., McOwat, T., & Hammond, L. (1996). Bats: Biology and behaviour (p. 262). Oxford University Press.
Bancroft, J. D., & Layton, C. (2013). The hematoxylin and eosin, connective and mesenchymal tissues with their stains. In S. K. Suvarna, C. Layton, & J. D. Bancroft (Eds.), Bancroft's theory and practice of histological techniques (7th ed., pp. 173–186). Churchill Livingstone.
Baradia, H., Nikahd, N., & Glasser, A. (2010). Mouse lens stiffness measurements. Experimental Eye Research, 91(2), 300–307.
Bettelheim, F. (1985). The physical basis of transparency. In The ocular lens: Structure function and pathology. Marcel‐Dekker.
Biswas, S. K., Lee, J. E., Brako, L., Jiang, J. X., & Lo, W.‐K. (2010). Gap junctions are selectively associated with interlocking ball‐and‐sockets but not protrusions in the lens. Molecular Vision, 16, 2328–2341.
Boyles, J. G., Cryan, P. M., McCracken, G. F., & Kunz, T. H. (2011). Economic importance of bats in agriculture. Science, 332(6025), 41–42. https://doi.org/10.1126/science.1201366.
Braekevelt, C. R. (1982). Fine structure of the retinal epithelium, Bruch's membrane (Complexus basalis) and choriocapillaris in the domestic ferret. Acta Anatomica (Basel), 113(2), 117–127. https://doi.org/10.1159/000145546.
Braekevelt, C. R. (1986). Fine structure of the choriocapillaris, Bruch's membrane and retinal epithelium of the cow. Anatomia, Histologia, Embryologia, 15(3), 205–214. https://doi.org/10.1111/j.1439-0264.1986.tb00712.x.
Collin, S. P., Davies, W. L., Hart, N. S., & Hunt, D. M. (2009). The evolution of early vertebrate photoreceptors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1531), 2925–2940. https://doi.org/10.1098/rstb.2009.0099.
Costello, M. J., & Fetter, R. D. (1986). Freeze‐fracture methods: Preparation of complementary replicas for evaluating intracellular ice damage in ultrarapidly cooled specimens. In Methods in enzymology (Vol. 127, pp. 704–718). Elsevier.
Delaye, M., & Tardieu, A. (1983). Short‐range order of crystallin proteins accounts for eye lens transparency. Nature, 302(5907), 415–417.
Dickson, D., & Crock, G. (1972). Interlocking patterns on primate lens fibers. Investigative Ophthalmology, 11(10), 809–815.
Farnsworth, P. N., Fu, S. J., Burke, P. A., & Bahia, I. (1974). Ultrastructure of rat eye lens fibers. Investigative Ophthalmology & Visual Science, 13(4), 274–279.
Feldman, J. L., & Phillips, C. J. (1984). Comparative retinal pigment epithelium and photoreceptor ultrastructure in nocturnal and fossorial rodents: The eastern woodrat, Neotoma floridana, and the plains pocket gopher, Geomys bursarius. Journal of Mammalogy, 65(2), 231–245.
Feller, K. D., Lagerholm, S., Clubwala, R., Silver, M. T., Haughey, D., Ryan, J. M., Loew, E. R., Deutschlander, M. E., & Kenyon, K. L. (2009). Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vespertilionidae). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 154(4), 412–418. https://doi.org/10.1016/j.cbpb.2009.08.006.
Graydon, M., Giorgi, P., & Pettigrew, J. (1987). Vision in flying foxes (Chiroptera: Pteropodidae). Australian Mammalogy, 10(2), 101–106.
Hogan, M. J., Alvarado, J. A., & Weddell, J. (1971). The lens. In Histology of the human eye (pp. 638–677). Sounders.
Izhaki, I., Korine, C., & Arad, Z. (1995). The effect of bat (Rousettus aegyptiacus) dispersal on seed germination in eastern Mediterranean habitats. Oecologia, 101(3), 335–342. https://doi.org/10.1007/bf00328820.
Jones, G., & Teeling, E. C. (2006). The evolution of echolocation in bats. Trends in Ecology & Evolution, 21(3), 149–156. https://doi.org/10.1016/j.tree.2006.01.001.
Krestić, R. (2004). Visual system, lens in human microscopic anatomy; an atlas for students of medicine and biology (4th ed.). Springer‐Verlag.
Kuszak, J., & Costello, M. (2002). In W. Tasman & E. Jaeger (Eds.), Embryology and anatomy of human lenses. Lippincott Co.
Kuwabara, T. (1975). The maturation of the lens cell: A morphologic study. Experimental Eye Research, 20(5), 427–443.
Kuwabara, T., & Imaizumi, M. (1974). Denucleation process of the lens. Investigative Ophthalmology & Visual Science, 13(12), 973–981.
Lo, W.‐K., Biswas, S. K., Brako, L., Shiels, A., Gu, S., & Jiang, J. X. (2014). Aquaporin‐0 targets interlocking domains to control the integrity and transparency of the eye lens. Investigative Ophthalmology & Visual Science, 55(3), 1202–1212.
Müller, B., Glösmann, M., Peichl, L., Knop, G. C., Hagemann, C., & Ammermüller, J. (2009). Bat eyes have ultraviolet‐sensitive cone photoreceptors. PLoS One, 4(7), e6390. https://doi.org/10.1371/journal.pone.0006390.
Němec, P., Cveková, P., Benada, O., Wielkopolska, E., Olkowicz, S., Turlejski, K., Burda, H., Bennett, N. C., & Peichl, L. (2008). The visual system in subterranean African mole‐rats (Rodentia, Bathyergidae): Retina, subcortical visual nuclei and primary visual cortex. Brain Research Bulletin, 75(2–4), 356–364.
New, S. T., Hemmi, J. M., Kerr, G. D., & Bull, C. M. (2012). Ocular anatomy and retinal photoreceptors in a skink, the sleepy lizard (Tiliqua rugosa). The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 295(10), 1727–1735.
Okinami, S. (1978). Freeze‐fracture replica of the primate lens fibers. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 209, 51–58.
Pardue, M. T., Stone, R. A., & Iuvone, P. M. (2013). Investigating mechanisms of myopia in mice. Experimental Eye Research, 114, 96–105.
Piatigorsky, J. (1984). Delta crystallins and their nucleic acids. Molecular and Cellular Biochemistry, 59, 33–56.
Sakuragawa, M., Kuwabara, T., Kinoshita, J. H., & Fukui, H. N. (1975). Swelling of the lens fibers. Experimental Eye Research, 21(4), 381–394.
Schluessel, V., Kraniotakes, H., & Bleckmann, H. (2014). Visual discrimination of rotated 3D objects in Malawi cichlids (Pseudotropheus sp.): A first indication for form constancy in fishes. Animal Cognition, 17(2), 359–371. https://doi.org/10.1007/s10071-013-0667-2.
Schmitz, L., & Wainwright, P. C. (2011). Nocturnality constrains morphological and functional diversity in the eyes of reef fishes. BMC Evolutionary Biology, 11, 1–14.
Suthers, R. A. (1970). A comment on the role of choroidal papillae in the fruit bat retina. Vision Research, 10(9), 921–923. https://doi.org/10.1016/0042-6989(70)90174-4.
Taylor, V., Al‐Ghoul, K., Lane, C., Davis, V. A., Kuszak, J., & Costello, M. J. (1996). Morphology of the normal human lens. Investigative Ophthalmology and Visual Science, 37(7), 1396–1410.
Van der Merwe, I., Lukats, A., Blahova, V., Oosthuizen, M. K., Bennett, N. C., & Němec, P. (2018). The topography of rods, cones and intrinsically photosensitive retinal ganglion cells in the retinas of a nocturnal (Micaelamys namaquensis) and a diurnal (Rhabdomys pumilio) rodent. PLoS One, 13(8), e0202106.
Vorobyev, M. (2003). Coloured oil droplets enhance colour discrimination. Proceedings of the Biological Sciences, 270(1521), 1255–1261. https://doi.org/10.1098/rspb.2003.2381.
Wang, X., Garcia, C. M., Shui, Y.‐B., & Beebe, D. C. (2004). Expression and regulation of α‐, β‐, and γ‐crystallins in mammalian lens epithelial cells. Investigative Ophthalmology & Visual Science, 45(10), 3608–3619.
Willekens, B., & Vrensen, G. (1981). The three‐dimensional organization of lens fibers in the rabbit: A scanning electron microscopic reinvestigation. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie, 216, 275–289.
Willekens, B., & Vrensen, G. (1982). The three‐dimensional organization of lens fibers in the rhesus monkey. Graefe's Archive for Clinical and Experimental Ophthalmology, 219, 112–120.
Willekens, B., & Vrensen, G. (1985). Lens fiber organization in four avian species: A scanning electron microscopic study. Tissue and Cell, 17(3), 359–377.
Zhou, C.‐J., & Lo, W.‐K. (2003). Association of clathrin, AP‐2 adaptor and actin cytoskeleton with developing interlocking membrane domains of lens fibre cells. Experimental Eye Research, 77(4), 423–432.
فهرسة مساهمة: Keywords: Egyptian fruit bat; insectivorous bat; lens
تواريخ الأحداث: Date Created: 20240224 Date Completed: 20240601 Latest Revision: 20240601
رمز التحديث: 20240602
DOI: 10.1002/jemt.24532
PMID: 38400686
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0029
DOI:10.1002/jemt.24532