دورية أكاديمية

Effect of ferric citrate hydrate on fibroblast growth factor 23 and platelets in non-dialysis-dependent chronic kidney disease and non-chronic kidney disease patients with iron deficiency anemia.

التفاصيل البيبلوغرافية
العنوان: Effect of ferric citrate hydrate on fibroblast growth factor 23 and platelets in non-dialysis-dependent chronic kidney disease and non-chronic kidney disease patients with iron deficiency anemia.
المؤلفون: Ito K; Medical Affairs Department, Torii Pharmaceutical Co., Ltd., 3-4-1, Nihonbashi-Honcho, Chuo-Ku, Tokyo, 103-8439, Japan.; Doctoral Program in Life Science Innovation (Disease Mechanism), Degree Programs in Comprehensive Human Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan., Akizawa T; Division of Nephrology, Department of Medicine, Showa University School of Medicine, Namics Shinagawa 301, 4-24-51 Takanawa, Minato-Ku, Tokyo, 108-0074, Japan. akizawa@med.showa-u.ac.jp., Arita K; Clinical Development Department, Pharmaceutical Division, Japan Tobacco Inc., 3-4-1, Nihonbashi-Honcho, Chuo-Ku, Tokyo, 103-0023, Japan., Mitobe Y; Medical Affairs Department, Torii Pharmaceutical Co., Ltd., 3-4-1, Nihonbashi-Honcho, Chuo-Ku, Tokyo, 103-8439, Japan., Komatsu N; Department of Hematology, Juntendo University School of Medicine, 2-1-1, Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
المصدر: Clinical and experimental nephrology [Clin Exp Nephrol] 2024 Jul; Vol. 28 (7), pp. 636-646. Date of Electronic Publication: 2024 Feb 25.
نوع المنشور: Journal Article; Randomized Controlled Trial; Multicenter Study
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Japan NLM ID: 9709923 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1437-7799 (Electronic) Linking ISSN: 13421751 NLM ISO Abbreviation: Clin Exp Nephrol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2008- : Tokyo : Springer
Original Publication: Tokyo : Published for the Japanese Society of Nephrology by Churchill Livingstone, c1997-
مواضيع طبية MeSH: Fibroblast Growth Factors*/blood , Ferric Compounds*/therapeutic use , Ferric Compounds*/administration & dosage , Fibroblast Growth Factor-23* , Renal Insufficiency, Chronic*/blood , Renal Insufficiency, Chronic*/complications , Renal Insufficiency, Chronic*/drug therapy , Anemia, Iron-Deficiency*/drug therapy , Anemia, Iron-Deficiency*/blood, Humans ; Male ; Female ; Middle Aged ; Aged ; Platelet Count ; Blood Platelets/drug effects ; Blood Platelets/metabolism ; Ferritins/blood ; Hematinics/therapeutic use ; Treatment Outcome ; Adult
مستخلص: Background: Iron deficiency anemia (IDA) increases levels of C-terminal fibroblast growth factor 23 (cFGF23) and platelet count (PLT), each of which is associated with cardiovascular events. Therefore, we hypothesized that iron replacement with ferric citrate hydrate (FC) would decrease cFGF23 levels and PLT in patients with IDA.
Methods: In a randomized, open-label, multicenter, 24-week clinical trial, patients with non-dialysis-dependent chronic kidney disease (CKD) and non-CKD complicated by IDA (8.0 ≤ hemoglobin < 11.0 g/dL; and serum ferritin < 50 ng/mL [CKD]; < 12 ng/mL [non-CKD]) were randomized 1:1 to FC-low (500 mg: approximately 120 mg elemental iron/day) or FC-high (1000 mg: approximately 240 mg elemental iron/day). If sufficient iron replacement had been achieved after week 8, further treatment was discontinued.
Results: Seventy-three patients were allocated to FC-low (CKD n = 21, non-CKD n = 15) and FC-high (CKD n = 21, non-CKD n = 16). Regardless of CKD status, FC increased serum ferritin and transferrin saturation, did not change intact FGF23 or serum phosphorus, but decreased cFGF23. In FC-low group, median changes in cFGF23 from baseline to week 8 were -58.00 RU/mL in CKD and -725.00 RU/mL in non-CKD; in FC-high group, the median changes were -66.00 RU/mL in CKD and -649.50 RU/mL in non-CKD. By week 8, FC treatment normalized PLT in all patients with high PLT at baseline (>35.2 × 10 4 /µL; FC-low: 1 CKD, 8 non-CKD; FC-high: 3 CKD, 8 non-CKD).
Conclusion: Regardless of CKD status, iron replacement with FC decreased elevated cFGF23 levels and normalized elevated PLT in patients with IDA.
Clinical Trial Registration Number: jRCT2080223943.
(© 2024. The Author(s).)
References: World Health Organization. Anaemia in women and children. https://www.who.int/data/gho/data/themes/topics/anaemia&#95;in&#95;women&#95;and&#95;children . Accessed 30 Aug 2023.
Lopez A, et al. Iron deficiency anaemia. Lancet. 2016;387:907–16. (PMID: 2631449010.1016/S0140-6736(15)60865-0)
Loncar G, et al. Iron deficiency in heart failure. ESC Heart Fail. 2021;8:2368–79. (PMID: 33932115831843610.1002/ehf2.13265)
Fishbane S, et al. Iron indices in chronic kidney disease in the national health and nutritional examination survey 1988–2004. Clin J Am Soc Nephrol. 2009;4:57–61. (PMID: 18987297261571510.2215/CJN.01670408)
Stack AG, et al. Transferrin saturation ratio and risk of total and cardiovascular mortality in the general population. QJM. 2014;107:623–33. (PMID: 24599805410884910.1093/qjmed/hcu045)
Schrage B, et al. Iron deficiency is a common disorder in general population and independently predicts all-cause mortality: results from the Gutenberg Health Study. Clin Res Cardiol. 2020;109:1352–7. (PMID: 32215702758839610.1007/s00392-020-01631-y)
Souma N, et al. Fibroblast growth factor 23 and cause-specific mortality in the general population: the Northern Manhattan Study. J Clin Endocrinol Metab. 2016;101:3779–86. (PMID: 27501282505233810.1210/jc.2016-2215)
Brandenburg VM, et al. Fibroblast growth factor 23 (FGF23) and mortality: the Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis. 2014;237:53–9. (PMID: 2520061510.1016/j.atherosclerosis.2014.08.037)
Eisenga MF, et al. Iron deficiency, elevated erythropoietin, fibroblast growth factor 23, and mortality in the general population of the Netherlands: a cohort study. PLoS Med. 2019;16:e1002818. (PMID: 31170159655371110.1371/journal.pmed.1002818)
Farrow EG, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci USA. 2011;108:E1146–55. (PMID: 22006328321911910.1073/pnas.1110905108)
Wolf M, White KE. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets and kidney disease. Curr Opin Nephrol Hypertens. 2014;23:411–9. (PMID: 24867675432285910.1097/01.mnh.0000447020.74593.6f)
Wolf M, et al. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28:1793–803. (PMID: 2350505710.1002/jbmr.1923)
Song AB, et al. Characterization of the rate, predictors, and thrombotic complications of thrombocytosis in iron deficiency anemia. Am J Hematol. 2020;95:1180–6. (PMID: 3261907910.1002/ajh.25925)
Chang YL, et al. Association between ischemic stroke and iron-deficiency anemia: a population-based study. PLoS One. 2013;8:e82952. (PMID: 24349404385728510.1371/journal.pone.0082952)
Evstatiev R, et al. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin. Am J Hematol. 2014;89:524–9. (PMID: 24464533411453210.1002/ajh.23682)
Jimenez K, et al. Iron deficiency-induced thrombocytosis increases thrombotic tendency in rats. Haematologica. 2021;106:782–94. (PMID: 3207969910.3324/haematol.2019.245092)
Li X, et al. Effect of iron supplementation on platelet count in adult patients with iron deficiency anemia. Platelets. 2022;33:1214–9. (PMID: 3605084210.1080/09537104.2022.2091772)
Yokoyama K, et al. Long-term safety and efficacy of a novel iron-containing phosphate binder, JTT-751, in patients receiving hemodialysis. J Ren Nutr. 2014;24:261–7. (PMID: 2483640110.1053/j.jrn.2014.03.006)
Yokoyama K, et al. JTT-751 for treatment of patients with hyperphosphatemia on peritoneal dialysis. Nephron Clin Pract. 2014;128:135–40. (PMID: 2540126610.1159/000366482)
Yokoyama K, et al. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. Clin J Am Soc Nephrol. 2014;9:543–52. (PMID: 24408120394475910.2215/CJN.05170513)
Komatsu N, et al. Efficacy and safety of ferric citrate hydrate compared with sodium ferrous citrate in Japanese patients with iron deficiency anemia: a randomized, double-blind, phase 3 non-inferiority study. Int J Hematol. 2021;114:8–17. (PMID: 337190271091784810.1007/s12185-021-03123-9)
Komatsu N, et al. The effect of ferric citrate hydrate as an iron replacement therapy in Japanese patients with iron deficiency anemia. (Japanese) Rinsho Ketsueki 2021; 62:1583–92. (PMID: 34866080)
Lewis JB, et al. Ferric citrate controls phosphorus and delivers iron in patients on dialysis. J Am Soc Nephrol. 2015;26:493–503. (PMID: 2506005610.1681/ASN.2014020212)
Fishbane S, et al. Effects of ferric citrate in patients with nondialysis-dependent CKD and iron deficiency anemia. J Am Soc Nephrol. 2017;28:1851–8. (PMID: 28082519546180310.1681/ASN.2016101053)
Takami A, et al. Reference intervals of red blood cell parameters and platelet count for healthy adults in Japan. Int J Hematol. 2021;114:373–80. (PMID: 3408016910.1007/s12185-021-03166-y)
Barbui T, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8:15. (PMID: 29426921580738410.1038/s41408-018-0054-y)
Scialla JJ, et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25:349–60. (PMID: 2415898610.1681/ASN.2013050465)
Hung SH, et al. Association between venous thromboembolism and iron-deficiency anemia: a population-based study. Blood Coagul Fibrinolysis. 2015;26:368–72. (PMID: 2568846310.1097/MBC.0000000000000249)
Parodi E, et al. Absolute reticulocyte count and reticulocyte hemoglobin content as predictors of early response to exclusive oral iron in children with iron deficiency anemia. Anemia. 2016;2016:7345835. (PMID: 27092272482063510.1155/2016/7345835)
Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82:737–47. (PMID: 22622492343432010.1038/ki.2012.176)
Hanudel MR, et al. Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice. Am J Physiol Renal Physiol. 2016;311:F1369–77. (PMID: 27733366521020210.1152/ajprenal.00281.2016)
Smith ER, et al. Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab. 2012;97:3357–65. (PMID: 2268969710.1210/jc.2012-1811)
Wolf M, et al. Effects of iron isomaltoside vs ferric carboxymaltose on hypophosphatemia in iron-deficiency anemia: two randomized clinical trials. JAMA. 2020;323:432–43. (PMID: 32016310704286410.1001/jama.2019.22450)
Fukao W, et al. Oral versus intravenous iron supplementation for the treatment of iron deficiency anemia in patients on maintenance hemodialysis: effect on fibroblast growth factor-23 metabolism. J Ren Nutr. 2018;28:270–7. (PMID: 2970363310.1053/j.jrn.2017.12.009)
Iguchi A, et al. Effect of ferric citrate hydrate on FGF23 and PTH levels in patients with non-dialysis-dependent chronic kidney disease with normophosphatemia and iron deficiency. Clin Exp Nephrol. 2018;22:789–96. (PMID: 2918165810.1007/s10157-017-1510-x)
Damasiewicz MJ, et al. The stability and variability of serum and plasma fibroblast growth factor-23 levels in a haemodialysis cohort. BMC Nephrol. 2018;19:325. (PMID: 30428848623696210.1186/s12882-018-1127-7)
Yamashita K, et al. Oral iron supplementation with sodium ferrous citrate reduces the serum intact and c-terminal fibroblast growth factor 23 levels of maintenance haemodialysis patients. Nephrology (Carlton). 2017;22:947–53. (PMID: 2755865410.1111/nep.12909)
Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol. 2020;16:7–19. (PMID: 3151999910.1038/s41581-019-0189-5)
Mehta R, et al. Fibroblast growth factor 23 and anemia in the chronic renal insufficiency cohort study. Clin J Am Soc Nephrol. 2017;12:1795–803. (PMID: 28784656567297310.2215/CJN.03950417)
Mehta RC, et al. Iron status, fibroblast growth factor 23 and cardiovascular and kidney outcomes in chronic kidney disease. Kidney Int. 2021;100:1292–302. (PMID: 34339746860872510.1016/j.kint.2021.07.013)
Grabner A, et al. FGF23/FGFR4-mediated left ventricular hypertrophy is reversible. Sci Rep. 2017;7:1993. (PMID: 28512310543401810.1038/s41598-017-02068-6)
Francis C, et al. Ferric citrate reduces fibroblast growth factor 23 levels and improves renal and cardiac function in a mouse model of chronic kidney disease. Kidney Int. 2019;96:1346–58. (PMID: 31668632687564010.1016/j.kint.2019.07.026)
Xavier-Ferrucio J, et al. Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood. 2019;134:1547–57. (PMID: 31439541683995210.1182/blood.2019002039)
Wattanakit K, et al. Chronic kidney disease increases risk for venous thromboembolism. J Am Soc Nephrol. 2008;19:135–40. (PMID: 18032796239103810.1681/ASN.2007030308)
Greinacher A, Selleng S. How I evaluate and treat thrombocytopenia in the intensive care unit patient. Blood. 2016;128(26):3032–42. (PMID: 2803487110.1182/blood-2016-09-693655)
فهرسة مساهمة: Keywords: Chronic kidney disease (CKD); Ferric citrate hydrate; Fibroblast growth factor 23 (FGF23); Iron deficiency anemia (IDA); Platelet count (PLT)
المشرفين على المادة: 62031-54-3 (Fibroblast Growth Factors)
0 (Ferric Compounds)
7Q7P4S7RRE (Fibroblast Growth Factor-23)
63G354M39Z (ferric citrate)
0 (FGF23 protein, human)
9007-73-2 (Ferritins)
0 (Hematinics)
تواريخ الأحداث: Date Created: 20240225 Date Completed: 20240620 Latest Revision: 20240624
رمز التحديث: 20240625
مُعرف محوري في PubMed: PMC11189996
DOI: 10.1007/s10157-023-02455-6
PMID: 38402503
قاعدة البيانات: MEDLINE
الوصف
تدمد:1437-7799
DOI:10.1007/s10157-023-02455-6