دورية أكاديمية

Histone modification-dependent production of peptide hormones facilitates acquisition of pluripotency during leaf-to-callus transition in Arabidopsis.

التفاصيل البيبلوغرافية
العنوان: Histone modification-dependent production of peptide hormones facilitates acquisition of pluripotency during leaf-to-callus transition in Arabidopsis.
المؤلفون: Hong C; Department of Chemistry, Seoul National University, Seoul, 08826, Korea., Lee HG; Department of Chemistry, Seoul National University, Seoul, 08826, Korea.; Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea., Shim S; Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, 24341, Korea., Park OS; Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea., Kim JH; Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea., Lee K; Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea., Oh E; Department of Life Sciences, Korea University, Seoul, 08826, Korea., Kim J; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea.; Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea., Jung YJ; Division of Horticultural Biotechnology, School of Biotechnology, Hankyong National University, Anseong, 17579, Korea.; Institute of Genetic Engineering, Hankyong National University, Anseong, 17579, Korea., Seo PJ; Department of Chemistry, Seoul National University, Seoul, 08826, Korea.; Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea.; Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea.
المصدر: The New phytologist [New Phytol] 2024 May; Vol. 242 (3), pp. 1068-1083. Date of Electronic Publication: 2024 Feb 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Arabidopsis*/metabolism , Arabidopsis Proteins*/metabolism , Peptide Hormones*, Histone Code ; Chromatin ; Plant Leaves/physiology ; Gene Expression Regulation, Plant
مستخلص: Chromatin configuration is critical for establishing tissue identity and changes substantially during tissue identity transitions. The crucial scientific and agricultural technology of in vitro tissue culture exploits callus formation from diverse tissue explants and tissue regeneration via de novo organogenesis. We investigated the dynamic changes in H3ac and H3K4me3 histone modifications during leaf-to-callus transition in Arabidopsis thaliana. We analyzed changes in the global distribution of H3ac and H3K4me3 during the leaf-to-callus transition, focusing on transcriptionally active regions in calli relative to leaf explants, defined by increased accumulation of both H3ac and H3K4me3. Peptide signaling was particularly activated during callus formation; the peptide hormones RGF3, RGF8, PIP1 and PIPL3 were upregulated, promoting callus proliferation and conferring competence for de novo shoot organogenesis. The corresponding peptide receptors were also implicated in peptide-regulated callus proliferation and regeneration capacity. The effect of peptide hormones in plant regeneration is likely at least partly conserved in crop plants. Our results indicate that chromatin-dependent regulation of peptide hormone production not only stimulates callus proliferation but also establishes pluripotency, improving the overall efficiency of two-step regeneration in plant systems.
(© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
References: Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM et al. 2011. Strigolactone signaling is required for auxin‐dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, USA 108: 20242–20247.
Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y. 2007. Tyrosine‐sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proceedings of the National Academy of Sciences, USA 104: 18333–18338.
Atta R, Laurens L, Boucheron‐Dubuisson E, Guivarc'h A, Carnero E, Giraudat‐Pautot V, Rech P, Chriqui D. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal 57: 626–644.
Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592.
Chen J‐Y, Liu S‐L, Siao W, Wang S‐J. 2010. Hormone and sugar effects on rice sucrose transporter OsSUT1 expression in germinating embryos. Acta Physiologiae Plantarum 32: 749–756.
Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nþrnberger T, Jones JDG, Felix G, Boller T. 2007. A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497–500.
Ckurshumova W, Berleth T. 2015. Overcoming recalcitrance – auxin response factor functions in plant regeneration. Plant Signaling & Behavior 10: e993293.
Deal RB, Henikoff S. 2011. Histone variants and modifications in plant gene regulation. Current Opinion in Plant Biology 14: 116–122.
Endo S, Betsuyaku S, Fukuda H. 2014. Endogenous peptide ligand–receptor systems for diverse signaling networks in plants. Current Opinion in Plant Biology 21: 140–146.
Fan M, Xu C, Xu K, Hu Y. 2012. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research 22: 1169–1180.
Fernandez A, Drozdzecki A, Hoogewijs K, Nguyen A, Beeckman T, Madder A, Hilson P. 2013. Transcriptional and functional classification of the GOLVEN/ROOT GROWTH FACTOR/CLE‐Like signaling peptides reveals their role in lateral root and hair formation. Plant Physiology 161: 954–970.
Fernandez A, Drozdzecki A, Hoogewijs K, Vassileva V, Madder A, Beeckman T, Hilson P. 2015. The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation. Journal of Experimental Botany 66: 5245–5256.
Fiers M, Golemiec E, Xu J, Van Der Geest L, Heidstra R, Stiekema W, Liu C‐M. 2005. The 14–amino acid CLV3, CLE19, and CLE40 peptides trigger consumption of the root meristem in Arabidopsis through a CLAVATA2‐dependent pathway. Plant Cell 17: 2542–2553.
Gou X, Yin H, He K, Du J, Yi J, Xu S, Lin H, Clouse DS, Li J. 2012. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genetics 8: e1002452.
Grafi G. 2004. How cells dedifferentiate: a lesson from plants. Developmental Biology 268: 1–6.
Hansen LL, Van Ooijen G. 2016. Rapid analysis of circadian phenotypes in Arabidopsis protoplasts transfected with a luminescent clock reporter. Journal of Visualized Experiments 115: 54586.
He A, Shen X, Ma Q, Cao J, Von Gise A, Zhou P, Wang G, Marquez VE, Orkin SH, Pu WT. 2012. PRC2 directly methylates GATA4 and represses its transcriptional activity. Genes & Development 26: 37–42.
He C, Chen X, Huang H, Xu L. 2012. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genetics 8: e1002911.
Hernãndez‐Coronado M, Dias Araujo PC, Ip P‐L, Nunes CO, Rahni R, Wudick MM, Lizzio MA, Feijõ JA, Birnbaum KD. 2022. Plant glutamate receptors mediate a bet‐hedging strategy between regeneration and defense. Developmental Cell 57: 451–465.
Hill K, Schaller GE. 2013. Enhancing plant regeneration in tissue culture. Plant Signaling & Behavior 8: e25709.
Hou S, Wang X, Chen D, Yang X, Wang M, Turrâ D, DI Pietro A, Zhang W. 2014. The secreted peptide PIP1 amplifies immunity through Receptor‐Like Kinase 7. PLoS Pathogens 10: e1004331.
Huffaker A, Pearce G, Ryan CA. 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proceedings of the National Academy of Sciences, USA 103: 10098–10103.
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70: 377–406.
Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293: 1074–1080.
Kang J, Wang X, Ishida T, Grienenberger E, Zheng Q, Wang J, Zhang Y, Chen W, Chen M, Song XF et al. 2022. A group of CLE peptides regulates de novo shoot regeneration in Arabidopsis thaliana. New Phytologist 235: 2300–2312.
Kareem A, Durgaprasad K, Sugimoto K, Du Y, Ajai Z, Pazhoor P, Elliot V, Scheres B, Prasad K. 2015. PLETHORA genes control regeneration by a two‐step mechanism. Current Biology 25: 1017–1030.
Kim JY, Yang W, Forner J, Lohmann JU, Noh B, Noh YS. 2018. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis. EMBO Journal 37: e98726.
Lafos M, Kroll P, Hohenstatt ML, Thorpe FL, Clarenz O, Schubert D. 2011. Dynamic regulation of H3K27 trimethylation during Arabidopsis differentiation. PLoS Genetics 7: e1002040.
Langmead B, Salzberg SL. 2012. Fast gapped‐read alignment with Bowtie2. Nature Methods 9: 357–359.
Lee HG, Won JH, Choi Y‐R, Lee K, Seo PJ. 2020. Brassinosteroids regulate circadian oscillation via the BES1/TPL‐CCA1/LHY module in Arabidopsis thaliana. iScience 23: 101528.
Lee K, Park O‐S, Seo PJ. 2016. RNA‐Seq analysis of the Arabidopsis transcriptome in pluripotent calli. Molecules and Cells 39: 484–494.
Lee K, Park O‐S, Seo PJ. 2017. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation. Science Signaling 10: eaan0316.
Li B, Carey M, Workman JL. 2007. The role of chromatin during transcription. Cell 128: 707–719.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.
Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first‐step cell fate transition during de Novo root organogenesis in Arabidopsis. Plant Cell 26: 1081–1093.
Liu X, Kim YJ, Mþller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X. 2011. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of polycomb group proteins. Plant Cell 23: 3654–3670.
Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, Tohge T, Fernie AR, Stitt M, Usadel B. 2014. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant, Cell & Environment 37: 1250–1258.
Lu X, Shi H, Ou Y, Cui Y, Chang J, Peng L, Gou X, He K, Li J. 2020. RGF1‐RGI1, a peptide‐receptor complex, regulates Arabidopsis root meristem development via a MAPK signaling cascade. Molecular Plant 13: 1594–1607.
Matsubayashi Y, Sakagami Y. 2006. Peptide hormones in plants. Annual Review of Plant Biology 57: 649–674.
Matsuzaki Y, Ogawa‐Ohnishi M, Mori A, Matsubayashi Y. 2010. Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329: 1065–1067.
Mendoza MG, Kaeppler HF. 2002. Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). In Vitro Cellular & Developmental Biology Plant 38: 39–45.
Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Tang YY, Zhang XS. 2017. Type‐B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29: 1357–1372.
Nam KH, Li J. 2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110: 203–212.
Omary M, Matosevich R, Efroni I. 2022. Systemic control of plant regeneration and wound repair. New Phytologist 237: 408–413.
Otero S, Helariutta Y, Benitez‐Alfonso Y. 2016. Symplastic communication in organ formation and tissue patterning. Current Opinion in Plant Biology 29: 21–28.
Ou Y, Lu X, Zi Q, Xun Q, Zhang J, Wu Y, Shi H, Wei Z, Zhao B, Zhang X et al. 2016. RGF1 INSENSITIVE 1 to 5, a group of LRR receptor‐like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Research 26: 686–698.
Pearce G, Strydom D, Johnson S, Ryan CA. 1991. A polypeptide from tomato leaves induces wound‐inducible proteinase inhibitor proteins. Science 253: 895–897.
Pitorre D, Llauro C, Jobet E, Guilleminot J, Brizard J‐P, Delseny M, Lasserre E. 2010. RLK7, a leucine‐rich repeat receptor‐like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Planta 232: 1339–1353.
Prasad K, Grigg SP, Barkoulas M, Yadav RK, Pinon V, Blilou I, Hofhuis H, Dhonukshe P, Galinha C, Mähönen AP et al. 2011. Arabidopsis PLETHORA transcription factors control phyllotaxis. Current Biology 21: 1123–1128.
Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842.
Ramïrez F, Ryan DP, GRþning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dþndar F, Manke T. 2016. deeptools2: a next generation web server for deep‐sequencing data analysis. Nucleic Acids Research 44: W160–W165.
Sambrook J, Fritschi EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. New York, NY, USA: Cold Spring Harbor Laboratory Press.
Shinohara H, Mori A, Yasue N, Sumida K, Matsubayashi Y. 2016. Identification of three LRR‐RKs involved in perception of root meristem growth factor in Arabidopsis. Proceedings of the National Academy of Sciences, USA 113: 3897–3902.
Song W, Liu L, Wang J, Wu Z, Zhang H, Tang J, Lin G, Wang Y, Wen X, Li W et al. 2016. Signature motif‐guided identification of receptors for peptide hormones essential for root meristem growth. Cell Research 26: 674–685.
Stahl Y, Wink RH, Ingram GC, Simon R. 2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Current Biology 19: 909–914.
Stþhrwohldt N, Schaller A. 2019. Regulation of plant peptide hormones and growth factors by post‐translational modification. Plant Biology 21: 49–63.
Suganuma T, Workman JL. 2008. Crosstalk among histone modifications. Cell 135: 604–607.
Sugimoto K, Jiao Y, Meyerowitz EM. 2010. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Developmental Cell 18: 463–471.
Tabata R, Sumida K, Yoshii T, Ohyama K, Shinohara H, Matsubayashi Y. 2014. Perception of root‐derived peptides by shoot LRR‐RKs mediates systemic N‐demand signaling. Science 346: 343–346.
Takahashi K, Yamanaka S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.
Tavormina P, Coninck DE, Nikonorova N, DE Smet I, Cammue BPA. 2015. The plant peptidome: an expanding repertoire of structural features and biological functions. Plant Cell 27: 2095–2118.
Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch‐Mani B, Vogelsang R, Cammue BPA, Broekaert WF. 1998. Separate jasmonate‐dependent and salicylate‐dependent defense‐response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences, USA 95: 15107–15111.
Toyokura K, Goh T, Shinohara H, Shinoda A, Kondo Y, Okamoto Y, Uehara T, Fujimoto K, Okushima Y, Ikeyama Y et al. 2019. Lateral inhibition by a peptide hormone‐receptor cascade during Arabidopsis lateral root founder cell formation. Developmental Cell 48: 64–75.
Yamada M, Han X, Benfey PN. 2020. RGF1 controls root meristem size through ROS signalling. Nature 577: 85–88.
Yang H, Matsubayashi Y, Nakamura K, Sakagami Y. 1999. Oryza sativa PSK gene encodes a precursor of phytosulfokine‐α, a sulfated peptide growth factor found in plants. Proceedings of the National Academy of Sciences, USA 96: 13560–13565.
Yao X, Feng H, Yu Y, Dong A, Shen W‐H. 2013. SDG2‐mediated H3K4 methylation is required for proper Arabidopsis root growth and development. PLoS ONE 8: e56537.
Zhang G, Zhao F, Chen L, Pan Y, Sun L, Bao N, Zhang T, Cui C‐X, Qiu Z, Zhang Y et al. 2019. Jasmonate‐mediated wound signalling promotes plant regeneration. Nature Plants 5: 491–497.
Zhang T‐Q, Lian H, Zhou C‐M, Xu L, Jiao Y, Wang J‐W. 2017. A two‐step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell 29: 1073–1087.
Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE. 2009. Genome‐wide analysis of mono‐, di‐ and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biology 10: R62.
Zhou J, Wang X, He K, Charron J‐BF, Elling AA, Deng XW. 2010. Genome‐wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Molecular Biology 72: 585–595.
Zhou W, LOZANO‐Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, Scheres B. 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177: 942–956.
Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco‐Zorrilla JM, Zhang W, Hill K, Raines T, Solano R et al. 2017. Cytokinin induces genome‐wide binding of the type‐B response regulator ARR10 to regulate growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, USA 114: E5995–E6004.
معلومات مُعتمدة: 2020R1A4A2002901 National Research Foundation of Korea; 2022R1A2B5B02001266 National Research Foundation of Korea
فهرسة مساهمة: Keywords: Arabidopsis thaliana; callus proliferation; chromatin landscape; de novo shoot organogenesis; peptide hormone; two‐step plant regeneration
المشرفين على المادة: 0 (Arabidopsis Proteins)
0 (Peptide Hormones)
0 (Chromatin)
تواريخ الأحداث: Date Created: 20240226 Date Completed: 20240412 Latest Revision: 20240412
رمز التحديث: 20240412
DOI: 10.1111/nph.19637
PMID: 38406998
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.19637