دورية أكاديمية

Noninvasive single-cell-based prenatal genetic testing: A proof of concept clinical study.

التفاصيل البيبلوغرافية
العنوان: Noninvasive single-cell-based prenatal genetic testing: A proof of concept clinical study.
المؤلفون: Bellair M; Luna Genetics, Houston, Texas, USA., Amaral E; Luna Genetics, Houston, Texas, USA., Ouren M; Luna Genetics, Houston, Texas, USA., Roark C; Luna Genetics, Houston, Texas, USA., Kim J; Luna Genetics, Houston, Texas, USA., O'Connor A; Luna Genetics, Houston, Texas, USA., Soriano A; Luna Genetics, Houston, Texas, USA., Schindler ML; Luna Genetics, Houston, Texas, USA., Wapner RJ; Columbia University Irving Medical Center, New York, New York, USA., Stone JL; Icahn School of Medicine at Mount Sinai, New York, New York, USA., Tavella N; Icahn School of Medicine at Mount Sinai, New York, New York, USA., Merriam A; Yale School of Medicine, New Haven, Connecticut, USA., Perley L; Yale School of Medicine, New Haven, Connecticut, USA., Breman AM; Indiana University School of Medicine, Indianapolis, Indiana, USA., Beaudet AL; Luna Genetics, Houston, Texas, USA.
المصدر: Prenatal diagnosis [Prenat Diagn] 2024 Mar; Vol. 44 (3), pp. 304-316. Date of Electronic Publication: 2024 Feb 27.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8106540 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-0223 (Electronic) Linking ISSN: 01973851 NLM ISO Abbreviation: Prenat Diagn Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, [Sussex]; New York : Wiley, c1981-
مواضيع طبية MeSH: Placenta* , Prenatal Diagnosis*/methods, Pregnancy ; Humans ; Female ; Amniocentesis ; Aneuploidy ; Mosaicism ; Genetic Testing
مستخلص: Objective: To clinically assess a cell-based noninvasive prenatal genetic test using sequence-based copy number analysis of single trophoblasts from maternal blood.
Methods: Blood was obtained from 401 (243 + 158) individuals (8-22 weeks) and shipped overnight. Red cells were lysed, and nucleated cells stained for cytokeratin (CK) and CD45 and enriched for positive CK staining. Automated scanning was used to identify and pick single CK + /CD45 - trophoblasts which were subjected to next-generation sequencing.
Results: Blood was obtained from 243 pregnancies scheduled for CVS or amniocentesis. Luna results were normal for 160 singletons while 15 cases were abnormal (14 aneuploidy and one monozygotic twin with Williams syndrome deletion). The deletion was confirmed in both fetuses. Placental mosaicism occurred in 7 of 236 (3.0%) Luna cases and in 3 of 188 (1.6%) CVS cases (total 4.6%). No scorable trophoblasts were recovered in 32 of 236 usable samples. Additionally, 158 low-risk pregnancies not undergoing CVS/amniocentesis showed normal results in 133 cases. Seven had aneuploidy results, and there were three likely pathogenic deletions/duplications, including one15q11-q13 deletion.
Conclusion: Although the sample size is modest and statistically accurate measures of test performance are not possible, the Luna test detected aneuploidy and deletions/duplications based on concordance with CVS/amniocentesis.
(© 2024 The Authors. Prenatal Diagnosis published by John Wiley & Sons Ltd.)
References: Salomon LJ, Sotiriadis A, Wulff CB, Odibo A, Akolekar R. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated meta-analysis. Ultrasound Obstet Gynecol. 2019;54(4):442-451. https://doi.org/10.1002/uog.20353.
Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet. 1969;1(7606):1119-1122. https://doi.org/10.1016/s0140-6736(69)91642-0.
Hatt L, Brinch M, Singh R, et al. A new marker set that identifies fetal cells in maternal circulation with high specificity. Prenat Diagn. 2014;34(11):1066-1072. https://doi.org/10.1002/pd.4429.
Hatt L, Brinch M, Singh R, et al. Characterization of fetal cells from the maternal circulation by microarray gene expression analysis--could the extravillous trophoblasts be a target for future cell-based non-invasive prenatal diagnosis? Fetal Diagn Ther. 2014;35(3):218-227. https://doi.org/10.1159/000356073.
Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472(7341):90-94. https://doi.org/10.1038/nature09807.
Bi W, Breman A, Shaw CA, et al. Detection of >/=1Mb microdeletions and microduplications in a single cell using custom oligonucleotide arrays. Prenat Diagn. 2012;32(1):10-20. https://doi.org/10.1002/pd.2855.
Breman AM, Chow JC, U'Ren L, et al. Evidence for feasibility of fetal trophoblastic cell-based noninvasive prenatal testing. Prenat Diagn. 2016;36(11):1009-1019. https://doi.org/10.1002/pd.4924.
Kolvraa S, Singh R, Normand EA, et al. Genome-wide copy number analysis on DNA from fetal cells isolated from the blood of pregnant women. Prenat Diagn. 2016;36(12):1127-1134. https://doi.org/10.1002/pd.4948.
Hou S, Chen JF, Song M, et al. Imprinted NanoVelcro microchips for isolation and characterization of circulating fetal trophoblasts: toward noninvasive prenatal diagnostics. ACS Nano. 2017;11(8):8167-8177. https://doi.org/10.1021/acsnano.7b03073.
Vossaert L, Wang Q, Salman R, et al. Validation studies for single circulating trophoblast genetic testing as a form of noninvasive prenatal diagnosis. Am J Hum Genet. 2019;105(6):1262-1273. https://doi.org/10.1016/j.ajhg.2019.11.004.
Jeppesen LD, Lildballe DL, Hatt L, et al. Noninvasive prenatal screening for cystic fibrosis using circulating trophoblasts: detection of the 50 most common disease-causing variants. Prenat Diagn. 2023;43(1):3-13. https://doi.org/10.1002/pd.6276.
Chang L, Zhu X, Li R, et al. A novel method for noninvasive diagnosis of monogenic diseases from circulating fetal cells. Prenat Diagn. 2021;41(4):400-408. https://doi.org/10.1002/pd.5796.
Doffini A, Forcato C, Mangano C, et al. Isolation of single circulating trophoblasts from maternal circulation for noninvasive fetal copy number variant profiling. Prenat Diagn. 2023;43(1):14-27. https://doi.org/10.1002/pd.6275.
Hatt L, Ravn K, Dahl Jeppesen L, et al. How does cell-based non-invasive prenatal test (NIPT) perform against chorionic villus sampling and cell-free NIPT in detecting trisomies and copy number variations? A clinical study from Denmark. Prenat Diagn. 2023;43(7):854-864. https://doi.org/10.1002/pd.6387.
Bianchi DW. Fetal cells in the maternal circulation: feasibility for prenatal diagnosis. Br J Haematol. 1999;105(3):574-583. https://doi.org/10.1046/j.1365-2141.1999.01383.x.
Beaudet AL. Using fetal cells for prenatal diagnosis: history and recent progress. Am J Med Genet C Semin Med Genet. 2016;172(2):123-127. https://doi.org/10.1002/ajmg.c.31487.
Vossaert L, Chakchouk I, Zemet R, Van den Veyver IB. Overview and recent developments in cell-based noninvasive prenatal testing. Prenat Diagn. 2021;41(10):1202-1214. https://doi.org/10.1002/pd.5957.
Fernandez T, Morgan T, Davis N, et al. Disruption of contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet. 2004;74(6):1286-1293. https://doi.org/10.1086/421474.
Fu J, Wang T, Fu Z, et al. Case report: a case report and literature review of 3p deletion syndrome. Front Pediatr. 2021;9:618059. https://doi.org/10.3389/fped.2021.618059.
Martins M, Arantes R, Botelho P, Souto M, Moutinho O, Pinto Leite R. Familiar del3p syndrome: the uncertainty of the prognosis. A case report. Clin Case Rep. 2021;9(4):2365-2368. https://doi.org/10.1002/ccr3.4036.
Nagamani SC, Erez A, Bader P, et al. Phenotypic manifestations of copy number variation in chromosome 16p13.11. Eur J Hum Genet. 2011;19(3):280-286. https://doi.org/10.1038/ejhg.2010.184.
Ullmann R, Turner G, Kirchhoff M, et al. Array CGH identifies reciprocal 16p13.1 duplications and deletions that predispose to autism and/or mental retardation. Hum Mutat. 2007;28(7):674-682. https://doi.org/10.1002/humu.20546.
Ramalingam A, Zhou XG, Fiedler SD, et al. 16p13.11 duplication is a risk factor for a wide spectrum of neuropsychiatric disorders. J Hum Genet. 2011;56(7):541-544. https://doi.org/10.1038/jhg.2011.42.
Dagli AI, Mathews J, Williams CA. Angelman syndrome. In: Adam MP, Mirzaa GM, Pagon RA, eds. GeneReviews((R)); 1993.
Driscoll DJ, Miller JL, Cassidy SB. Prader-willi syndrome. In: Adam MP, Mirzaa GM, Pagon RA, eds. GeneReviews((R)); 1993.
Hui L, Bianchi DW. Fetal fraction and noninvasive prenatal testing: what clinicians need to know. Prenat Diagn. 2020;40(2):155-163. https://doi.org/10.1002/pd.5620.
Kruckow S, Schelde P, Hatt L, et al. Does maternal body mass index affect the quantity of circulating fetal cells available to use for cell-based noninvasive prenatal test in high-risk pregnancies? Fetal Diagn Ther. 2019;45(5):353-356. https://doi.org/10.1159/000492028.
Krabchi K, Gadji M, Forest JC, Drouin R. Quantification of all fetal nucleated cells in maternal blood in different cases of aneuploidies. Clin Genet. 2006;69(2):145-154. https://doi.org/10.1111/j.1399-0004.2005.00564.x.
Zhou L, Li H, Xu C, Xu X, Zheng Z, Tang S. Characteristics and mechanisms of mosaicism in prenatal diagnosis cases by application of SNP array. Mol Cytogenet. 2023;16(1):13. https://doi.org/10.1186/s13039-023-00648-y.
Gu S, Jernegan M, Van den Veyver IB, Peacock S, Smith J, Breman A. Chromosomal microarray analysis on uncultured chorionic villus sampling can be complicated by confined placental mosaicism for aneuploidy and microdeletions. Prenat Diagn. 2018;38(11):858-865. https://doi.org/10.1002/pd.5342.
Lund ICB, Becher N, Graakjaer J, et al. Mosaicism for copy number variations in the placenta is even more difficult to interpret than mosaicism for whole chromosome aneuploidy. Prenat Diagn. 2021;41(6):668-680. https://doi.org/10.1002/pd.5938.
Emad A, Bouchard EF, Lamoureux J, et al. Validation of automatic scanning of microscope slides in recovering rare cellular events: application for detection of fetal cells in maternal blood. Prenat Diagn. 2014;34(6):538-546. https://doi.org/10.1002/pd.4345.
Hou S, Chen JF, Song M, et al. Correction to imprinted NanoVelcro microchips for isolation and characterization of circulating fetal trophoblasts: toward noninvasive prenatal diagnostics. ACS Nano. 2017;11(12):12863. https://doi.org/10.1021/acsnano.7b07188.
Idarraga GDO, Suarez IDM, Osorio KGH, Corredor DMD, Redondo JCP, Yepes RG. Results of preimplantation genetic testing for aneuploidy (PGT-A) in a cohort of 319 embryos: experience in a fertility clinic in Colombia. JBRA Assist Reprod. 2022;26(2):280-287.
Eggenhuizen GM, Go A, Koster MPH, Baart EB, Galjaard RJ. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: a review of the literature. Hum Reprod Update. 2021;27(5):885-903. https://doi.org/10.1093/humupd/dmab009.
van Prooyen Schuurman L, Sistermans EA, Van Opstal D, et al. Clinical impact of additional findings detected by genome-wide non-invasive prenatal testing: follow-up results of the TRIDENT-2 study. Am J Hum Genet. 2022;109(7):1344. https://doi.org/10.1016/j.ajhg.2022.06.003.
Xiang J, Li R, He J, et al. Clinical impacts of genome-wide noninvasive prenatal testing for rare autosomal trisomy. Am J Obstet Gynecol MFM. 2023;5(1):100790. https://doi.org/10.1016/j.ajogmf.2022.100790.
Chang L, Jiao H, Chen J, et al. Single-cell whole-genome sequencing, haplotype analysis in prenatal diagnosis of monogenic diseases. Life Sci Alliance. 2023;6(5):e202201761. https://doi.org/10.26508/lsa.202201761.
معلومات مُعتمدة: N/A Luna Genetics, Inc
تواريخ الأحداث: Date Created: 20240227 Date Completed: 20240318 Latest Revision: 20240725
رمز التحديث: 20240726
DOI: 10.1002/pd.6529
PMID: 38411249
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-0223
DOI:10.1002/pd.6529