دورية أكاديمية

Security-oriented steganographic payload allocation for multi-remote sensing images.

التفاصيل البيبلوغرافية
العنوان: Security-oriented steganographic payload allocation for multi-remote sensing images.
المؤلفون: Wu T; Digital Literacy and Skills Enhancement Research Center, Jiangxi Province Philosophy and Social Science Key Research Base, School of Public Policy and Administration, Nanchang University, Nanchang, 330031, China., Hu X; Digital Literacy and Skills Enhancement Research Center, Jiangxi Province Philosophy and Social Science Key Research Base, School of Public Policy and Administration, Nanchang University, Nanchang, 330031, China., Liu C; Digital Literacy and Skills Enhancement Research Center, Jiangxi Province Philosophy and Social Science Key Research Base, School of Public Policy and Administration, Nanchang University, Nanchang, 330031, China. liuchunnian@ncu.edu.cn.
المصدر: Scientific reports [Sci Rep] 2024 Feb 28; Vol. 14 (1), pp. 4826. Date of Electronic Publication: 2024 Feb 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مستخلص: Multi-image steganography, a technique for concealing information within multiple carrier mediums, finds remote sensing images to be particularly apt carriers due to their complex structures and abundant texture data. These characteristics bolster the resilience against steganalysis and enhance steganographic capacity. The efficacy of multi-image steganography hinges on the diplomatic strategy of cover selection and the meticulous allocation of the payload. Nevertheless, the majority of current methods, which are empirically formulated, predominantly focus on the texture complexity of individual images, thereby potentially undermining overall security. This paper introduces a security-oriented approach to steganographic payload allocation for multiple remote sensing images aimed at fortifying the security of multi-image steganography. Our primary contributions include employing a steganalysis pre-trained network to quantify texture complexity in remote sensing cover images, directly correlating it with security. Additionally, we have developed an adaptive payload allocation strategy for multiple images, which embeds a payload proximate to each image's maximal steganographic capacity while concurrently ensuring the security of the embedding process. Experimental results corroborate that our methodology excels in cover selection and payload allocation and achieves better undetectability against modern steganalysis tools.
(© 2024. The Author(s).)
References: Zhang, Z., Cao, Y., Jahanshahi, H. & Mou, J. Chaotic color multi-image compression-encryption/lsb data type steganography scheme for nft transaction security. J. King Saud Univ. Comput. Inf. Sci. 35, 101839. https://doi.org/10.1016/j.jksuci.2023.101839 (2023). (PMID: 10.1016/j.jksuci.2023.101839)
Tahiri, M. A. et al. Implementation of a steganography system based on hybrid square quaternion moment compression in iomt. J. King Saud Univ. Comput. Inf. Sci. 35, 101604. https://doi.org/10.1016/j.jksuci.2023.101604 (2023). (PMID: 10.1016/j.jksuci.2023.101604)
Fridrich, J. & Soukal, D. Matrix embedding for large payloads. IEEE Trans. Inf. Forensics Secur. 1, 390–395 (2006). (PMID: 10.1109/TIFS.2006.879281)
Zhang, W., Zhang, X. & Wang, S. Maximizing steganographic embedding efficiency by combining hamming codes and wet paper codes. In Information Hiding: 10th International Workshop, IH 2008, Santa Barbara, CA, USA, May 19–21, 2008, Revised Selected Papers 10, 60–71 (Springer, 2008).
Filler, T., Judas, J. & Fridrich, J. Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6, 920–935 (2011). (PMID: 10.1109/TIFS.2011.2134094)
Sedighi, V., Cogranne, R. & Fridrich, J. Content-adaptive steganography by minimizing statistical detectability. IEEE Trans. Inf. Forensics Secur. 11, 221–234 (2015). (PMID: 10.1109/TIFS.2015.2486744)
Cogranne, R., Giboulot, Q. & Bas, P. Efficient steganography in jpeg images by minimizing performance of optimal detector. IEEE Trans. Inf. Forensics Secur. 17, 1328–1343 (2021). (PMID: 10.1109/TIFS.2021.3111713)
Liu, M., Luo, W., Zheng, P. & Huang, J. A new adversarial embedding method for enhancing image steganography. IEEE Trans. Inf. Forensics Secur. 16, 4621–4634 (2021). (PMID: 10.1109/TIFS.2021.3111748)
Tang, W., Li, B., Barni, M., Li, J. & Huang, J. An automatic cost learning framework for image steganography using deep reinforcement learning. IEEE Trans. Inf. Forensics Secur. 16, 952–967 (2020). (PMID: 10.1109/TIFS.2020.3025438)
Sajedi, H. & Jamzad, M. Using contourlet transform and cover selection for secure steganography. Int. J. Inf. Secur. 9, 337–352 (2010). (PMID: 10.1007/s10207-010-0112-3)
Liao, X., Yin, J., Chen, M. & Qin, Z. Adaptive payload distribution in multiple images steganography based on image texture features. IEEE Trans. Depend. Secure Comput. 19, 897–911. https://doi.org/10.1109/TDSC.2020.3004708 (2022). (PMID: 10.1109/TDSC.2020.3004708)
Chen, M., He, P. & Liu, J. Hltd-csa: Cover selection algorithm based on hybrid local texture descriptor for color image steganography. J. Vis. Commun. Image Represent. 89, 103646. https://doi.org/10.1016/j.jvcir.2022.103646 (2022). (PMID: 10.1016/j.jvcir.2022.103646)
Wang, Z., Zhang, X. & Qian, Z. Practical cover selection for steganography. IEEE Signal Process. Lett. 27, 71–75. https://doi.org/10.1109/LSP.2019.2956416 (2020). (PMID: 10.1109/LSP.2019.2956416)
Wang, Z., Feng, G., Shen, L. & Zhang, X. Cover selection for steganography using image similarity. IEEE Trans. Dependable Secure Comput. 20, 2328–2340. https://doi.org/10.1109/TDSC.2022.3181039 (2023). (PMID: 10.1109/TDSC.2022.3181039)
Ker, A. D. & Pevný, T. Batch steganography and the threshold game. In Information hiding, 341–355 (Springer, 2007).
Ker, A. D. Batch steganography and pooled steganalysis. In Proc of Proceedings of International Conference on Information Hiding, 265–281, https://doi.org/10.1007/978-3-540-74124-4_18 (Springer, 2007).
Westfeld, A. & Pfitzmann, A. Attacks on steganographic systems, information hiding. In Third international workshop, IH, vol. 99, https://doi.org/10.1007/10719724_5 (2000).
Fridrich, J. & Goljan, M. Practical steganalysis of digital images: State of the art. Secur. Watermark. Multimed. Contents IV 4675, 1–13. https://doi.org/10.1117/12.465263 (2002). (PMID: 10.1117/12.465263)
Fridrich, J. & Kodovsky, J. Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7, 868–882. https://doi.org/10.1109/TIFS.2012.2190402 (2012). (PMID: 10.1109/TIFS.2012.2190402)
Wang, Z., Zhang, X. & Yin, Z. Joint cover-selection and payload-allocation by steganographic distortion optimization. IEEE Signal Process. Lett. 25, 1530–1534. https://doi.org/10.1109/LSP.2018.2865888 (2018). (PMID: 10.1109/LSP.2018.2865888)
Hu, X., Ni, J., Zhang, W. & Huang, J. Efficient jpeg batch steganography using intrinsic energy of image contents. IEEE Trans. Inf. Forensics Secur. 16, 4544–4558. https://doi.org/10.1109/TIFS.2021.3109464 (2021). (PMID: 10.1109/TIFS.2021.3109464)
Li, N., Yan, F., Venegas-Andraca, S. E. & Hirota, K. Quantum image scaling with applications to image steganography and fusion. Signal Process. Image Commun. 117, 117015 (2023). (PMID: 10.1016/j.image.2023.117015)
Sajedi, H. & Jamzad, M. Using contourlet transform and cover selection for secure steganography. Int. J. Inf. Secur. 9, 337–352. https://doi.org/10.1007/s10207-010-0112-3 (2010). (PMID: 10.1007/s10207-010-0112-3)
Yu, X. et al. Improving the embedding strategy for batch adaptive steganography. In Digital Forensics and Watermarking: 17th International Workshop, 248–260. https://doi.org/10.1007/978-3-030-11389-6_19 (Springer, 2019).
Holub, V. & Fridrich, J. Designing steganographic distortion using directional filters. In 2012 IEEE International Workshop on Information Forensics and Security (WIFS), 234–239, https://doi.org/10.1109/WIFS.2012.6412655 (2012).
Shi, T., Kong, J.-Y., Wang, X.-D., Liu, Z. & Zheng, G. Improved sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy. J. Cent. South Univ. 23, 2867–2875. https://doi.org/10.1007/s11771-016-3350-3 (2016). (PMID: 10.1007/s11771-016-3350-3)
Subhedar, M. S. & Mankar, V. H. Curvelet transform and cover selection for secure steganography. Multimed. Tools Appl. 77, 8115–8138. https://doi.org/10.1007/s11042-017-4706-x (2018). (PMID: 10.1007/s11042-017-4706-x)
Liao, X. & Yin, J. Two embedding strategies for payload distribution in multiple images steganography. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1982–1986, https://doi.org/10.1109/ICASSP.2018.8462384 (2018).
Zhang, X. & Wang, S. Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 10, 781–783. https://doi.org/10.1109/LCOMM.2006.060863 (2006). (PMID: 10.1109/LCOMM.2006.060863)
Li, B., Wang, M., Huang, J. & Li, X. A new cost function for spatial image steganography. In 2014 IEEE International Conference on Image Processing (ICIP), 4206–4210, https://doi.org/10.1109/ICIP.2014.7025854 (2014).
Tseng, Y.-C., Chen, Y.-Y. & Pan, H.-K. A secure data hiding scheme for binary images. IEEE Trans. Commun. 50, 1227–1231. https://doi.org/10.1109/TCOMM.2002.801488 (2002). (PMID: 10.1109/TCOMM.2002.801488)
Boroumand, M., Chen, M. & Fridrich, J. Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14, 1181–1193. https://doi.org/10.1109/TIFS.2018.2871749 (2019). (PMID: 10.1109/TIFS.2018.2871749)
Yang, J., Ruan, D., Huang, J., Kang, X. & Shi, Y.-Q. An embedding cost learning framework using gan. IEEE Trans. Inf. Forensics Secur. 15, 839–851. https://doi.org/10.1109/TIFS.2019.2922229 (2020). (PMID: 10.1109/TIFS.2019.2922229)
Deng, J. et al. Imagenet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255, https://doi.org/10.1109/CVPR.2009.5206848 (2009).
Lu, W., Zhang, J., Zhao, X., Zhang, W. & Huang, J. Secure robust jpeg steganography based on autoencoder with adaptive bch encoding. IEEE Trans. Circuits Syst. Video Technol. 31, 2909–2922. https://doi.org/10.1109/TCSVT.2020.3027843 (2021). (PMID: 10.1109/TCSVT.2020.3027843)
Butora, J., Yousfi, Y. & Fridrich, J. How to pretrain for steganalysis. In Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security, 143–148. https://doi.org/10.1145/3437880.3460395 (2021).
Yousfi, Y., Butora, J., Khvedchenya, E. & Fridrich, J. Imagenet pre-trained cnns for jpeg steganalysis. In 2020 IEEE International Workshop on Information Forensics and Security (WIFS), 1–6, https://doi.org/10.1109/WIFS49906.2020.9360897 (IEEE, 2020).
Conotter, V., Boato, G. & Farid, H. Detecting photo manipulation on signs and billboards. In 2010 IEEE International Conference on Image Processing, 1741–1744, https://doi.org/10.1109/ICIP.2010.5652906 (2010).
Breunig, M. M., Kriegel, H.-P., Ng, R. T. & Sander, J. Lof: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, 93–104, https://doi.org/10.1145/342009.335388 (2000).
Gretton, A. et al. A kernel two-sample test. J. Mach. Learn. Res. 13, 723–773. https://doi.org/10.48550/arXiv.2004.11098 (2012). (PMID: 10.48550/arXiv.2004.11098)
Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 105, 1865–1883. https://doi.org/10.1109/JPROC.2017.2675998 (2017). (PMID: 10.1109/JPROC.2017.2675998)
Yang, Y. & Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, 270–279, https://doi.org/10.1145/1869790.1869829 (2010).
Holub, V., Fridrich, J. & Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 1–13. https://doi.org/10.1186/1687-417X-2014-1 (2014). (PMID: 10.1186/1687-417X-2014-1)
Tang, W., Tan, S., Li, B. & Huang, J. Automatic steganographic distortion learning using a generative adversarial network. IEEE Signal Process. Lett. 24, 1547–1551. https://doi.org/10.1109/LSP.2017.2745572 (2017). (PMID: 10.1109/LSP.2017.2745572)
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18, 234–241, https://doi.org/10.1007/978-3-319-24574-4_28 (Springer, 2015).
Xu, G., Wu, H.-Z. & Shi, Y.-Q. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 23, 708–712. https://doi.org/10.1109/LSP.2016.2548421 (2016). (PMID: 10.1109/LSP.2016.2548421)
Filler, T., Judas, J. & Fridrich, J. Minimizing embedding impact in steganography using trellis-coded quantization. In Media forensics and security II, vol. 7541, 38–51, https://doi.org/10.1117/12.838002 (SPIE, 2010).
Rao, K., Yip, P., Rao, K. R. & Rao, K. R. Discrete cosine transform: Algorithms, advantages, applications. Discrete Cosine Transform Algorithms Adv. Appl. 14, 507–508. https://doi.org/10.1016/0141-5425(92)90104-S (1990). (PMID: 10.1016/0141-5425(92)90104-S)
Yuan, C., Wang, H., He, P., Luo, J. & Li, B. Gan-based image steganography for enhancing security via adversarial attack and pixel-wise deep fusion. Multimed. Tools Appl. 81, 6681–6701. https://doi.org/10.1007/s11042-021-11778-z (2022). (PMID: 10.1007/s11042-021-11778-z)
Wang, H., Pan, X., Fan, L. & Zhao, S. Steganalysis of convolutional neural network based on neural architecture search. Multimed. Syst. 27, 379–387. https://doi.org/10.1007/s00530-021-00779-5 (2021). (PMID: 10.1007/s00530-021-00779-5)
Cheng, G., Han, J. & Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 105, 1865–1883 (2017). (PMID: 10.1109/JPROC.2017.2675998)
Yang, Y. & Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL international conference on advances in geographic information systems, 270–279 (2010).
Bas, P., Filler, T. & Pevnỳ, T. “ Break our steganographic system”: The ins and outs of organizing boss. In International workshop on information hiding, 59–70 (Springer, 2011).
معلومات مُعتمدة: 72064027 National Natural Science Foundation of China; 22SKJD05 Jiangxi Provincial Philosophical and Social Science Key Research Base
تواريخ الأحداث: Date Created: 20240227 Latest Revision: 20240301
رمز التحديث: 20240301
مُعرف محوري في PubMed: PMC10899589
DOI: 10.1038/s41598-024-55474-y
PMID: 38413801
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-024-55474-y