دورية أكاديمية

Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes.

التفاصيل البيبلوغرافية
العنوان: Multiple Ecological Axes Drive Molecular Evolution of Cone Opsins in Beloniform Fishes.
المؤلفون: Chau KD; Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada.; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.; Department of Biology, York University, Toronto, ON, Canada., Hauser FE; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada., Van Nynatten A; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.; Department of Biology, University of Victoria, Victoria, Canada., Daane JM; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA., Harris MP; Department of Genetics, Harvard Medical School, Boston, MA, USA., Chang BSW; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada., Lovejoy NR; Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, Canada. nathan.lovejoy@utoronto.ca.; Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada. nathan.lovejoy@utoronto.ca.; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada. nathan.lovejoy@utoronto.ca.; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada. nathan.lovejoy@utoronto.ca.
المصدر: Journal of molecular evolution [J Mol Evol] 2024 Apr; Vol. 92 (2), pp. 93-103. Date of Electronic Publication: 2024 Feb 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0360051 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1432 (Electronic) Linking ISSN: 00222844 NLM ISO Abbreviation: J Mol Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Cone Opsins*/genetics, Animals ; Phylogeny ; Opsins/genetics ; Fishes/genetics ; Evolution, Molecular
مستخلص: Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Akaike H (1974) A new look at the statistical model identification. IEEE Trans Auto Control 19:716–723. https://doi.org/10.1109/TAC.1974.1100705. (PMID: 10.1109/TAC.1974.1100705)
Baldwin MW, Toda Y, Nakagita T, O’Connell MJ, Klasing KC, Misaka T, Edwards SV, Liberles SD (2014) Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor. Science 345:929–933. https://doi.org/10.1126/science.1255097. (PMID: 10.1126/science.1255097251462904302410)
Baylor ER (1967) Air and water vision of the Atlantic flying fish, Cypselurus heterurus. Nature 214:307–309. https://doi.org/10.1038/214307a0. (PMID: 10.1038/214307a06034254)
Bielawski JP, Yang Z (2004) A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evo 89:121–132. https://doi.org/10.1007/s00239-004-2597-8. (PMID: 10.1007/s00239-004-2597-8)
Bloom DD, Lovejoy NR (2017) On the origins of marine-derived freshwater fishes in South America. J Biogeogr 44:1927–1938. https://doi.org/10.1111/jbi.12954. (PMID: 10.1111/jbi.12954)
Bowmaker JK (2008) Evolution of vertebrate visual pigments. Vision Res 48:2022–2041. https://doi.org/10.1016/j.visres.2008.03.025. (PMID: 10.1016/j.visres.2008.03.02518590925)
Bowmaker JK, Govardovskii VI, Shukolyukov SA, Zueva LV, Hunt DM, Sideleva VG, Smirnov OG (1994) Visual pigments and the photic environment: the cottoid fish of Lake Baikal. Vision Res 34:591–605. https://doi.org/10.1016/0042-6989(94)90015-9. (PMID: 10.1016/0042-6989(94)90015-98160379)
Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18:1540–1550. https://doi.org/10.1093/oxfordjournals.molbev.a003940. (PMID: 10.1093/oxfordjournals.molbev.a00394011470845)
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ (2020) Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol. https://doi.org/10.1242/jeb.193334. (PMID: 10.1242/jeb.193334323275617188444)
Corbo JC (2021) Vitamin A1/A2 chromophore exchange: its role in spectral tuning and visual plasticity. Dev Biol 475:145–155. (PMID: 10.1016/j.ydbio.2021.03.002336844358900494)
Cortesi F, Mitchell LJ, Tettamanti BV, Fogg LG, de Busserolles F, Cheney KL, Marshall NJ (2020) Visual system diversity in coral reef fishes. Sem Cell Dev Bio 106:31–42. https://doi.org/10.1016/j.semcdb.2020.06.007. (PMID: 10.1016/j.semcdb.2020.06.007)
Daane JM, Blum N, Lanni J, Boldt H, Iovine MK, Higdon CW, Johnson SL, Lovejoy NR, Harris MP (2021) Modulation of bioelectric cues in the evolution of flying fishes. Curr Biol 31:5052–5061. https://doi.org/10.1016/j.cub.2021.08.054. (PMID: 10.1016/j.cub.2021.08.054345344419172250)
Dalton BE, Loew ER, Cronin TW, Carleton KL (2014) Spectral tuning by opsin coexpression in retinal regions that view different parts of the visual field. Proc Roy Soc B 281:20141980–20141980. (PMID: 10.1098/rspb.2014.1980)
Dalton BE, de Busserolles F, Marshall NJ, Carleton KL (2017) Retinal specialization through spatially varying cell densities and opsin coexpression in cichlid fish. J Exp Biol 220:266–277. (PMID: 278113026514458)
Davenport J (1994) How and why do flying fish fly? Rev Fish Biol Fish 4:184–214. https://doi.org/10.1007/BF00044128. (PMID: 10.1007/BF00044128)
Day RD, German DP, Manjakasy JM, Farr I, Hansen MJ, Tibbetts IR (2011) Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory. J Comp Physiol B 181:603–613. https://doi.org/10.1007/s00360-010-0546-y. (PMID: 10.1007/s00360-010-0546-y21212962)
de Gutierrez EA, Schott RK, Preston MW, Loureiro LO, Lim BK, Chang BSW (2018) The role of ecological factors in shaping bat cone opsin evolution. Proc Biol Sci 285:20172835. https://doi.org/10.1098/rspb.2017.2835. (PMID: 10.1098/rspb.2017.2835296185495904313)
Escobar‐Camacho D, Ramos E, Martins C, Carleton KL (2017) The opsin genes of amazonian cichlids. Mol Ecol 26:1343–1356. https://doi.org/10.1111/mec.13957. (PMID: 10.1111/mec.13957279970485342946)
Foote AD, Liu Y, Thomas GWC, Vinař T, Alföldi J, Deng J, Dugan S, van Elk CE, Hunter ME, Joshi V et al (2015) Convergent evolution of the genomes of marine mammals. Nat Genet 47:272–275. (PMID: 10.1038/ng.3198256214604644735)
Fotiadis D, Jastrzebska B, Philippsen A, Müller DJ, Palczewski K, Engel A (2006) Structure of the rhodopsin dimer: a working model for G protein-coupled receptors. Curr Opin Struct Biol 16:252–259. https://doi.org/10.1016/j.sbi.2006.03.013. (PMID: 10.1016/j.sbi.2006.03.01316567090)
Guo W, Shi L, Filizola M, Weinstein H, Javitch JA (2005) Crosstalk in G protein-coupled receptors: change at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci U S A 102:17495–17500. https://doi.org/10.1073/pnas.0508950102. (PMID: 10.1073/pnas.0508950102163015311287488)
Hagen JF, Roberts NS, Johnston RJ (2023) The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 493:40–66. (PMID: 10.1016/j.ydbio.2022.10.01436370769)
Hansson L-A (2000) Induced pigmentation in zooplankton: a trade-off between threats from predation and ultraviolet radiation. Proc R Soc B Bio Sci 267:2327–2331. https://doi.org/10.1098/rspb.2000.1287. (PMID: 10.1098/rspb.2000.1287)
Hansson L-A, Hylander S (2009) Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behaviour, and community ecology of zooplankton. Photochem Photobiol Sci 8:1266–1275. https://doi.org/10.1039/B908825C. (PMID: 10.1039/B908825C19707615)
Härer A, Torres-Dowdall J, Meyer A (2017) Rapid adaptation to a novel light environment: the importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (Amphilophus citrinellus spp.). Mol Ecol 26:5582–5593. (PMID: 10.1111/mec.1428928792657)
Hauser FE, Chang BSW (2017) Insights into visual pigment adaptation and diversity from model ecological and evolutionary systems. Curr Op Genet Develop 47:110–120. https://doi.org/10.1016/j.gde.2017.09.005. (PMID: 10.1016/j.gde.2017.09.00529102895)
Hauser FE, Ilves KL, Schott RK, Albi E, López-Fernández H, Chang BSW (2021) Evolution, inactivation and loss of short wavelength-sensitive opsin genes during the diversification of Neotropical cichlids. Mol Ecol 30:1688–1703. https://doi.org/10.1111/mec.15838. (PMID: 10.1111/mec.1583833569886)
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2017) UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. https://doi.org/10.1093/molbev/msx281. (PMID: 10.1093/molbev/msx2815850222)
Hofmann CM, O’Quin KE, Marshall NJ, Cronin TW, Seehausen O, Carleton KL (2009) The eyes have it: regulatory and structural changes both underlie cichlid visual pigment diversity. PLoS Biol 7:e1000266. https://doi.org/10.1371/journal.pbio.1000266. (PMID: 10.1371/journal.pbio.1000266200272112790343)
Hofmann CM, O’Quin KE, Smith AR, Carleton KL (2010) Plasticity of opsin gene expression in cichlids from Lake Malawi. Mol Ecol 19:2064–2074. (PMID: 10.1111/j.1365-294X.2010.04621.x20374487)
Hofmann CM, Marshall NJ, Abdilleh K, Patel Z, Siebeck UE, Carleton KL (2012) Opsin evolution in damselfish: convergence, reversal, and parallel evolution across tuning sites. J Mol Evol 75:79–91. https://doi.org/10.1007/s00239-012-9525-0. (PMID: 10.1007/s00239-012-9525-023080353)
Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Bio 204:3333–3344. (PMID: 10.1242/jeb.204.19.3333)
Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinfor 21:676–679. https://doi.org/10.1093/bioinformatics/bti079. (PMID: 10.1093/bioinformatics/bti079)
Kutschera U (2005) Predator-driven macroevolution in flyingfishes inferred from behavioural studies: historical controversies and a hypothesis. Ann Hist Phil Biol 10:59–77.
Levine JS, MacNichol EF (1982) Color vision in fishes. Sci Am 246:140–149. https://doi.org/10.1038/scientificamerican0282-140. (PMID: 10.1038/scientificamerican0282-140)
Lewallen EA, van Wijnen AJ, Bonin CA, Lovejoy NR (2018) Flyingfish (Exocoetidae) species diversity and habitats in the eastern tropical Pacific Ocean. Marine Biodivers 48:1755–1765. https://doi.org/10.1007/s12526-017-0666-7. (PMID: 10.1007/s12526-017-0666-7)
Lin J-J, Wang F-Y, Li W-H, Wang T-Y (2017) The rises and falls of opsin genes in 59 ray-finned fish genomes and their implications for environmental adaptation. Sci Rep 7:15568. https://doi.org/10.1038/s41598-017-15868-7. (PMID: 10.1038/s41598-017-15868-7291384755686071)
Liu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan EC (2011) Thermal properties of rhodopsin: insight into the molecular mechanism of dim-light vision. J Biol Chem 286:27622–27629. https://doi.org/10.1074/jbc.M111.233312. (PMID: 10.1074/jbc.M111.233312216595263149353)
Lovejoy NR, Collette BB (2001) Phylogenetic relationships of new world needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia 2001:324–338. (PMID: 10.1643/0045-8511(2001)001[0324:PRONWN]2.0.CO;2)
Lovejoy NR, Iranpour M, Collette BB (2004) Phylogeny and jaw ontogeny of beloniform fishes. Integr Comp Biol 44:366–377. https://doi.org/10.1093/icb/44.5.366. (PMID: 10.1093/icb/44.5.36621676722)
Luehrmann M, Carleton KR, Cortesi F, Cheney KL, Marshall NJ (2019) Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol 28:3025–3041. https://doi.org/10.1111/mec.15102. (PMID: 10.1111/mec.1510230977927)
Luehrmann M, Cortesi F, Cheney KL, de Busserolles F, Marshall NJ (2020) Microhabitat partitioning correlates with opsin gene expression in coral reef cardinalfishes (Apogonidae). Funct Ecol 34:1041–1052. (PMID: 10.1111/1365-2435.13529)
Lythgoe JN (1998) Light and vision in the aquatic environment. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York.
Manjakasy JM, Day RD, Kemp A, Tibbetts IR (2009) Functional morphology of digestion in the stomachless, piscivorous needlefishes Tylosurus gavialoides and Strongylura leiura ferox (Teleostei: Beloniformes). J Morphol 270:1155–1165. https://doi.org/10.1002/jmor.10745. (PMID: 10.1002/jmor.1074519378267)
Marshall NJ, Jennings K, McFarland WN, Loew ER, Losey GS (2003) Visual biology of Haiwaiian coral reef fishes. III. Environmental light and an integrated approach to the ecology of reef fish vision. Copeia 2003:467–480. https://doi.org/10.1643/01-056. (PMID: 10.1643/01-056)
Matsumoto Y, Fukamachi S, Mitani H, Kawamura S (2006) Functional characterization of visual opsin repertoire in Medaka (Oryzias latipes). Gene 371:268–278. https://doi.org/10.1016/j.gene.2005.12.005. (PMID: 10.1016/j.gene.2005.12.00516460888)
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol Biol Evol 30:1196–1205. https://doi.org/10.1093/molbev/mst030. (PMID: 10.1093/molbev/mst030234208403670733)
Musilova Z, Cortesi F (2021) Multiple ancestral and a plethora of recent gene duplications during the evolution of the green sensitive opsin genes (RH2) in teleost fishes. BioRXiv. https://doi.org/10.1101/2021.05.11.443711. (PMID: 10.1101/2021.05.11.443711)
Musilova Z, Cortesi F, Matschiner M, Davies WI, Patel JS, Stieb SM, de Busserolles F, Malmstrøm M, Tørresen OK, Brown CJ, Mountford JK (2019) Vision using multiple distinct rod opsins in deep-sea fishes. Science 364:588–592. (PMID: 10.1126/science.aav4632310730666628886)
Musilova Z, Salzburger W, Cortesi F (2021) The visual opsin repertoires of teleost fishes: evolution, ecology, and function. Ann Rev Cell Dev Biol 37:441–468. https://doi.org/10.1146/annurev-cellbio-120219-024915. (PMID: 10.1146/annurev-cellbio-120219-024915)
Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A et al (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. PNAS 110:11061–11066. https://doi.org/10.1073/pnas.1302051110. (PMID: 10.1073/pnas.1302051110237811003703999)
Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th edn. Wiley, New York. (PMID: 10.1002/9781119174844)
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300. (PMID: 10.1093/molbev/msu30025371430)
Novales FI (2005) Temporal shifts in visual pigment absorbance in the retina of Pacific salmon. J Comp Physiol A 191:37–49. https://doi.org/10.1007/s00359-004-0573-9. (PMID: 10.1007/s00359-004-0573-9)
Novales FI (2013) Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc R Soc B. https://doi.org/10.1098/rspb.2012.2490. (PMID: 10.1098/rspb.2012.2490232224483574309)
Novales FI (2016) Diminished foraging performance of a mutant zebrafish with reduced population of ultraviolet cones. Proc R Soc B. https://doi.org/10.1098/rspb.2016.0058. (PMID: 10.1098/rspb.2016.0058269362434810871)
O‘Quin KE, Hofmann CM, Hofmann HA, Carleton KL (2010) Parallel evolution of opsin gene expression in African cichlid fishes. Mol Biol Evol 27:2839–2854. https://doi.org/10.1093/molbev/msq171. (PMID: 10.1093/molbev/msq17120601410)
Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 342:571–583. https://doi.org/10.1016/j.jmb.2004.07.044. (PMID: 10.1016/j.jmb.2004.07.04415327956)
O’Quin KE, Smith AR, Sharma A, Carleton KL (2011) New evidence for the role of heterochrony in the repeated evolution of cichlid opsin expression. Evol Dev 13:193–203. (PMID: 10.1111/j.1525-142X.2011.00469.x21410875)
Partha R, Chauhan BK, Ferreira Z, Robinson JD, Lathrop K, Nischal KK, Chikina M, Clark NL (2017) Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling. Elife 6:e25884. https://doi.org/10.7554/eLife.25884. (PMID: 10.7554/eLife.25884290356975643096)
Reckel F, Melzer RR (2003) Regional variations in the outer retina of atherinomorpha (Beloniformes Atheriniformes Cyprinodontiformes: Teleostei): Photoreceptors, cone patterns, and cone densities. J Morph 257:270–288. https://doi.org/10.1002/jmor.10122. (PMID: 10.1002/jmor.1012212833370)
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Mr Bayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029. (PMID: 10.1093/sysbio/sys029223577273329765)
Schott RK, Refvik SP, Hauser FE, Lόpez-Fernández H, Chang BSW (2014) Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 31:1149–1165. https://doi.org/10.1093/molbev/msu064. (PMID: 10.1093/molbev/msu06424509690)
Sioli H (1984) The Amazon and its main affluents hydrography morphology of the river courses and river types. In: Sioli H (ed) The Amazon monographiae biologicae. Springer, Dordrecht.
Spady TC, Parry JWL, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547. https://doi.org/10.1093/molbev/msl014. (PMID: 10.1093/molbev/msl01416720697)
Stieb SM, Cortesi F, Sueess L, Carleton KL, Salzburger W, Marshall NJ (2016a) Why UV- and red-vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes. Mol Ecol 26:1323–1342. https://doi.org/10.1111/mec.13968. (PMID: 10.1111/mec.13968)
Stieb SM, Carleton KL, Cortesi F, Marshall NJ (2016b) Depth dependent plasticity in opsin gene expression varies between damselfish (Pomacentridae) species. Mol Ecol 25:3645–3661. https://doi.org/10.1111/mec.13712. (PMID: 10.1111/mec.1371227262029)
Stieb SM, de Busserolles F, Carleton KL et al (2019) A detailed investigation of the visual system and visual ecology of the barrier reef anemonefish, Amphiprion akindynos. Sci Rep 9:16459–16514. (PMID: 10.1038/s41598-019-52297-0317125726848076)
Torres-Dowdall J, Karagis N, Härer A, Meyer A (2021) Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Mol Ecol 30:1880–1891. https://doi.org/10.1111/mec.15855. (PMID: 10.1111/mec.1585533619757)
Utne-Palm AC (2010) Visual feeding of fish in a turbid environment: physical and behavioural aspects. Mar Fresh Behav Physiol 35:111–128. https://doi.org/10.1080/10236240290025644. (PMID: 10.1080/10236240290025644)
Van Noord JE, Lewallen EA, Pitman RL (2013) Flyingfish feeding ecology in the eastern Pacific: prey partitioning within a speciose epipelagic community. Fish Biol 83:326–342. https://doi.org/10.1111/jfb.12173. (PMID: 10.1111/jfb.12173)
Van Nynatten A, Bloom DD, Chang BSW, Lovejoy NR (2015) Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion. Biol Lett 11:20150349. https://doi.org/10.1098/rsbl.2015.0349. (PMID: 10.1098/rsbl.2015.0349262243864528450)
Van Nynatten A, Catiglione GM, de Gutierrez E, A, Lovejoy NR, Chang BSW. (2021) Recreated ancestral opsin associated with marine to freshwater croaker invasion reveals kinetic and spectral adaptation. Mol Biol Evol 38:2076–2087. https://doi.org/10.1093/molbev/msab008. (PMID: 10.1093/molbev/msab008334810028097279)
Wald G (1968) The molecular basis of visual excitation. Nature 219:800–807. (PMID: 10.1038/219800a04876934)
Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591. https://doi.org/10.1093/molbev/msm088. (PMID: 10.1093/molbev/msm08817483113)
Yokoyama S, Takashi T, Zhang H, Britt L (2008) Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. PNAS 105:13480–13485. https://doi.org/10.1073/pnas.0802426105. (PMID: 10.1073/pnas.0802426105187688042533215)
Yoshimatsu T, Schröder C, Nevala NE, Berens P, Baden T (2020) Fovea-like photoreceptor specializations underlie single UV cone driven prey-capture behavior in zebrafish. Neuron 107:320–337. https://doi.org/10.1016/j.neuron.2020.04.021. (PMID: 10.1016/j.neuron.2020.04.021324730947383236)
معلومات مُعتمدة: DEB-1407092 National Science Foundation
فهرسة مساهمة: Keywords: Codon-based likelihood models; Colour vision; Ecological transitions; Molecular evolution; Opsins
المشرفين على المادة: 0 (Cone Opsins)
0 (Opsins)
تواريخ الأحداث: Date Created: 20240228 Date Completed: 20240401 Latest Revision: 20240401
رمز التحديث: 20240401
DOI: 10.1007/s00239-024-10156-1
PMID: 38416218
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1432
DOI:10.1007/s00239-024-10156-1