دورية أكاديمية

Participatory hackathon to determine ecological relevant endpoints for a neurotoxin to aquatic and benthic invertebrates.

التفاصيل البيبلوغرافية
العنوان: Participatory hackathon to determine ecological relevant endpoints for a neurotoxin to aquatic and benthic invertebrates.
المؤلفون: Rasmussen SB; Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands. a.s.b.rasmussen@cml.leidenuniv.nl., Bosker T; Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands.; Leiden University College, Leiden University, P.O. Box 13228, 2501, EE, The Hague, The Netherlands., Ramanand GG; Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands., Vijver MG; Institute of Environmental Sciences, Leiden University, P.O. Box 9518, 2300, RA, Leiden, The Netherlands.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Mar; Vol. 31 (15), pp. 22885-22899. Date of Electronic Publication: 2024 Feb 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Neurotoxins* , Water Pollutants, Chemical*/toxicity , Water Pollutants, Chemical*/analysis , Sulfur Compounds*, Humans ; Animals ; Invertebrates ; Pyridines ; Larva ; Daphnia
مستخلص: The aim of this study is twofold: i) to determine innovative yet sensitive endpoints for sulfoxaflor and ii) to develop best practices for innovative teaching in ecotoxicology. To this end, a group of 52 MSc students participated in an environmental hackathon, during which they did creative toxicity testing on 5 freshwater invertebrate species: Daphnia magna, Chironomus riparius, Asellus aquaticus, Lymnaea stagnalis, and Anisus vortex. Involving the students in an active learning environment stimulated increased creativity and productivity. In total, 28 endpoints were investigated, including standard endpoints (e.g., mortality) as well as biomechanistic and energy-related endpoints. Despite high variances in the results, likely linked to the limited lab experience of the students and interpersonal differences, a promising set of endpoints was selected for further investigation. A more targeted follow-up experiment focused on the most promising organism and set of endpoints: biomechanistic endpoints of C. riparius larvae. Larvae were exposed to a range of sulfoxaflor concentrations (0.90-67.2 μg/L) for 21 days. Video tracking showed that undulation and swimming were significantly reduced at 11.1 μg sulfoxaflor/L after 9 days of exposure, and an EC 50 = 10.6 μg/L for mean velocities of the larvae in the water phase was found. Biomechanistic endpoints proved much more sensitive than mortality, for which an LC 50 value of 116 μg/L was found on Day 9. Our results show that performing a hackathon with students has excellent potential to find sensitive endpoints that can subsequently be verified using more targeted and professional follow-up experiments. Furthermore, utilising hackathon events in teaching can increase students' enthusiasm about ecotoxicology, driving better learning experiences.
(© 2024. The Author(s).)
References: Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11(7):36–42.
Ågerstrand M, Arnold K, Balshine S, Brodin T, Brooks BW, Maack G, McCallum ES, Pyle G, Saaristo M, Ford AT (2020) Emerging investigator series: use of behavioural endpoints in the regulation of chemicals. Environ Sci: Process Impacts 22(1):49–65.
Angarita MAM, Nolte A (2020) What do we know about hackathon outcomes and how to support them?–a systematic literature review. In: International Conference on Collaboration Technologies and Social Computing. Springer, Cham, pp 50–64. (PMID: 10.1007/978-3-030-58157-2_4)
Areljung S, Leden L, Wiblom J (2021) Expanding the notion of ‘ownership’ in participatory research involving teachers and researchers. Int J Res Method Educ 44(5):463–473. (PMID: 10.1080/1743727X.2021.1892060)
Atta B, Rizwan M, Sabir AM, Gogi MD, Farooq MA, Jamal A (2021) Lethal and sublethal effects of clothianidin, imidacloprid and sulfoxaflor on the wheat aphid, Schizaphis graminum (Hemiptera: Aphididae) and its coccinellid predator, Coccinella septempunctata. Int J Tropical Insect Sci 41:345–358. (PMID: 10.1007/s42690-020-00212-w)
Augusiak J, Van den Brink PJ (2016) The influence of insecticide exposure and environmental stimuli on the movement behaviour and dispersal of a freshwater isopod. Ecotoxicol 25(7):1338–1352. (PMID: 10.1007/s10646-016-1686-y)
Azpiazu C, Bosch J, Bortolotti L, Medrzycki P, Teper D, Molowny-Horas R, Sgolastra F (2021) Toxicity of the insecticide sulfoxaflor alone and in combination with the fungicide fluxapyroxad in three bee species. Sci Rep 11(1):1–9. (PMID: 10.1038/s41598-021-86036-1)
Barmentlo SH, Vriend LM, van Grunsven RH, Vijver MG (2019) Environmental levels of neonicotinoids reduce prey consumption, mobility and emergence of the damselfly Ischnura elegans. J Appl Ecol 56(8):2034–2044. (PMID: 10.1111/1365-2664.13459)
Barmentlo SH, Schrama M, De Snoo GR, Van Bodegom PM, van Nieuwenhuijzen A, Vijver MG (2021) Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proc Natl Acad Sci 118(44):e2105692118. (PMID: 10.1073/pnas.2105692118)
Bownik A, Wlodkowic D (2021) Applications of advanced neuro-behavioral analysis strategies in aquatic ecotoxicology. Sci Total Environ 772:145577. (PMID: 10.1016/j.scitotenv.2021.145577)
Brackenbury J (2000) Locomotory modes in the larva and pupa of Chironomus plumosus (Diptera, Chironomidae). J Insect Physiol 46(12):1517–1527. (PMID: 10.1016/S0022-1910(00)00079-2)
Brooks AJ, Bray J, Nichols SJ, Shenton M, Kaserzon S, Mac Nally R, Kefford BJ (2021) Sensitivity and specificity of macroinvertebrate responses to gradients of multiple agricultural stressors. Environ Pollut 291:118092. (PMID: 10.1016/j.envpol.2021.118092)
Busch W, Schmidt S, Kühne R, Schulze T, Krauss M, Altenburger R (2016) Micropollutants in European rivers: a mode of action survey to support the development of effect-based tools for water monitoring. Environ Toxicol Chem 35(8):1887–1899. (PMID: 10.1002/etc.3460)
Cornwall A, Jewkes R (1995) What is participatory research? Soc Sci Med 41(12):1667–1676. (PMID: 10.1016/0277-9536(95)00127-S)
Cropley DH (2015) Promoting creativity and innovation in engineering education. Psychol Aesthet Creat Arts 9(2):161–171. (PMID: 10.1037/aca0000008)
Cutler P, Slater R, Edmunds AJ, Maienfisch P, Hall RG, Earley FG, Pitterna T, Pal S, Paul VL, Goodchild J, Blacker M, Hagmann L, Crossthwaite AJ (2013 May) (2012). Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid. Pest Manag Sci 69(5):607–619. https://doi.org/10.1002/ps.3413 Epub 2012 Oct 30. (PMID: 10.1002/ps.3413)
Cwikel J, Simhi M (2021) Using the hackathon model in social work education. Soc Work Educ 41(8):1563–1576. (PMID: 10.1080/02615479.2021.1910654)
DeHaan RL (2011) Teaching creative science thinking. Science 334:1499–1500. (PMID: 10.1126/science.1207918)
Deslauriers L, McCarty LS, Miller K, Callaghan K, Kestin G (2019) Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. Proc Natl Acad Sci 116(39):19251–19257. (PMID: 10.1073/pnas.1821936116)
Dewey SL (1986) Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology 67(1):148–162. (PMID: 10.2307/1938513)
Dow (2014) Isoclast active technical bulletin. Dow AgroSciences, USA [cited 2022 Aug 2]. Available from: http://storage.dow.com.edgesuite.net/dowagro/isoclast/Isoclast%20Active%20Technical%20Bulletin.pdf.
EFSA (European Food Safety Authority) (2014) Conclusion on the peer review of the pesticide risk assessment of the active substance sulfoxaflor. EFSA J 12(5):170. https://doi.org/10.2903/j.efsa.2014.3692. (PMID: 10.2903/j.efsa.2014.3692)
EFSA (European Food Safety Authority) (2020) Conclusion on the peer review of the pesticide risk assessment for the active substance sulfoxaflor in light of confirmatory data submitted. EFSA J 18(3):15. https://doi.org/10.2903/j.efsa.2020.6056. (PMID: 10.2903/j.efsa.2020.6056)
Gauthier JR, Mabury SA (2021) The sulfoximine insecticide sulfoxaflor and its photodegradate demonstrate acute toxicity to the nontarget invertebrate species Daphnia magna. Environ Toxicol Chem 40(8):2156–2164. (PMID: 10.1002/etc.5117)
Gibson S, Baskerville D, Berry A, Black A, Norris K, Symeonidou S (2017) Including students as co-enquirers: matters of identity, agency, language and labelling in an international participatory research study. Int J Educ Res 81:108–118. (PMID: 10.1016/j.ijer.2016.11.008)
Gutierrez MF, Gagneten AM, Paggi JC (2013) Acute and behavioral sensitivity of Mesocyclops longisetus to atrazine and endosulfan formulations under predation pressure. Water Air Soil Pollut 224:1–9. (PMID: 10.1007/s11270-012-1375-2)
Hare L, Tessier A, Warren L (2001) Cadmium accumulation by invertebrates living at the sediment–water interface. Environ Toxicol Chem: An Int J 20(4):880–889. (PMID: 10.1002/etc.5620200424)
Hawtrey (2007) Using experiential learning techniques. J Econ Educ 38(2):143–152. https://doi.org/10.3200/JECE.38.2.143-152. (PMID: 10.3200/JECE.38.2.143-152)
Hoffman MM (2020) Assessing the sublethal impacts of sulfoxaflor on the physiology and behavior of Daphnia magna. Student Res Submi 344. https://scholar.umw.edu/student&#95;research/344 . Accessed 16 Feb 2022.
Hölker F, Stief P (2005) Adaptive behaviour of chironomid larvae (Chironomus riparius) in response to chemical stimuli from predators and resource density. Behav Ecol Sociobiol 58(3):256–263. (PMID: 10.1007/s00265-005-0932-8)
IRAC (Insecticide Resistance Action Committee) (2023). Mode of action classification scheme version 10.6, September 2023. [cited 2023 November 14]. Available from: https://irac-online.org/documents/moa-classification/.
Jull J, Giles A, Graham ID (2017) Community-based participatory research and integrated knowledge translation: advancing the co-creation of knowledge. Implement Sci 12(1):1–9. (PMID: 10.1186/s13012-017-0696-3)
Karima Z (2021) Chironomidae: biology, ecology and systematics. In: The Wonders of Diptera - characteristics, diversity, and significance for the world’s ecosystems. IntechOpen. https://doi.org/10.5772/intechopen.95577. (PMID: 10.5772/intechopen.95577)
Lang DJ, Wiek A, Bergmann M, Stauffacher M, Martens P, Moll P, Swilling M, Thomas CJ (2012) Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustain Sci 7(1):25–43. (PMID: 10.1007/s11625-011-0149-x)
Langer-Jaesrich M, Kienle C, Köhler HR, Gerhardt A (2010) Impairment of trophic interactions between zebrafish (Danio rerio) and midge larvae (Chironomus riparius) by chlorpyrifos. Ecotoxicol 19(7):1294–1301. (PMID: 10.1007/s10646-010-0516-x)
Legradi JB, Di Paolo C, Kraak MHS, Van der Geest HG, Schymanski EL, Williams AJ, Dingemans MML, Massei R, Brack W, Cousin X, Begout M-L, van der Oost R, Carion A, Suarez-Ulloa V, Silvestre F, Escher BI, Engwall M, Nilén G, Keiter SH et al (2018) An ecotoxicological view on neurotoxicity assessment. Environ Sci Eur 30(1):1–34. (PMID: 10.1186/s12302-018-0173-x)
Liu P, Wu F, Li H, You J (2021) The neonicotinoid alternative sulfoxaflor causes chronic toxicity and impairs mitochondrial energy production in Chironomus kiinensis. Aquat Toxicol 235:105822. (PMID: 10.1016/j.aquatox.2021.105822)
Maloney EM, Sykes H, Morrissey C, Peru KM, Headley JV, Liber K (2020) Comparing the acute toxicity of imidacloprid with alternative systemic insecticides in the aquatic insect Chironomus dilutus. Environ Toxicol Chem 39(3):587–594. (PMID: 10.1002/etc.4639)
Medina MS, Smith WT, Kolluru S, Sheaffer EA, DiVall M (2019) A review of strategies for designing, administering, and using student ratings of instruction. Am J Pharm Educ 83(5):7177. (PMID: 10.5688/ajpe7177)
Moore EA, Babbitt CW, Connelly SJ, Tyler AC, Rogalskyj G (2019) Cascading ecological impacts of fullerenes in freshwater ecosystems. Environ Toxicol Chem 38(8):1714–1723. (PMID: 10.1002/etc.4465)
Morrissey CA, Mineau P, Devries JH, Sanchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303. (PMID: 10.1016/j.envint.2014.10.024)
OECD (2004) Test No. 219: Sediment-water chironomid toxicity using spiked water, OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris. https://doi.org/10.1787/9789264070288-en. (PMID: 10.1787/9789264070288-en)
OECD (2012) Test No. 211: Daphnia magna reproduction test, OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris. https://doi.org/10.1787/9789264185203-en. (PMID: 10.1787/9789264185203-en)
Pestana JL, Loureiro S, Baird DJ, Soares AM (2009) Fear and loathing in the benthos: responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquat Toxicol 93(2-3):138–149. (PMID: 10.1016/j.aquatox.2009.04.008)
Postma JF, Van Kleunen A, Admiraal W (1995) Alterations in life-history traits of Chironomus riparius (Diptera) obtained from metal contaminated rivers. Arch Environ Contam Toxicol 29(4):469–475. (PMID: 10.1007/BF00208376)
Prosser RS, De Solla SR, Holman EAM, Osborne R, Robinson SA, Bartlett AJ et al (2016) Sensitivity of the early-life stages of freshwater mollusks to neonicotinoid and butenolide insecticides. Environ Pollut 218:428–435. (PMID: 10.1016/j.envpol.2016.07.022)
Rabus M, Laforsch C (2011) Growing large and bulky in the presence of the enemy: Daphnia magna gradually switches the mode of inducible morphological defences. Funct Ecol 25(5):1137–1143. (PMID: 10.1111/j.1365-2435.2011.01840.x)
Raby M, Nowierski M, Perlov D, Zhao X, Hao C, Poirier DG, Sibley PK (2018) Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates. Environ Toxicol Chem 37(5):1430–1445. (PMID: 10.1002/etc.4088)
Relyea R, Hoverman J (2006) Assessing the ecology in ecotoxicology: a review and synthesis in freshwater systems. Ecol Lett 9(10):1157–1171. (PMID: 10.1111/j.1461-0248.2006.00966.x)
Richardi VS, Vicentini M, Rebechi D, Fávaro LF, Navarro-Silva MA (2015) Morpho-histological characterization of immature of the bioindicator midge Chironomus sancticaroli Strixino and Strixino (Diptera, Chironomidae). Revista Brasileira de Entomologia 59:240–250. (PMID: 10.1016/j.rbe.2015.07.003)
Roura M (2020) The social ecology of power in participatory health research. Qual Health Res 31(4):778–788. (PMID: 10.1177/1049732320979187)
Rubach MN, Crum SJ, Van den Brink PJ (2011) Variability in the dynamics of mortality and immobility responses of freshwater arthropods exposed to chlorpyrifos. Arch Environ Contam Toxicol 60(4):708–721. (PMID: 10.1007/s00244-010-9582-6)
Sánchez-Bayo F, Goka K, Hayasaka D (2016) Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front Environ Sci 4:71. (PMID: 10.3389/fenvs.2016.00071)
Sarma SSS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health B 41(8):1417–1430. (PMID: 10.1080/03601230600964316)
Schuijt LM, Peng FJ, van den Berg SJ, Dingemans MM, Van den Brink PJ (2021) (Eco) toxicological tests for assessing impacts of chemical stress to aquatic ecosystems: facts, challenges, and future. Sci Total Environ 795:148776. (PMID: 10.1016/j.scitotenv.2021.148776)
Siviter H, Brown MJF, Leadbeater E (2018) Sulfoxaflor exposure reduces bumblebee reproductive success. Nature 561(7721):109–112. https://doi.org/10.1038/s41586-018-0430-6 Epub 2018 Aug 15. (PMID: 10.1038/s41586-018-0430-6)
Strasser B, Baudry J, Mahr D, Sanchez G, Tancoigne E (2019) “Citizen science”? Rethinking science and public participation. Sci Technol Stud 32(ARTICLE):52–76.
Taylor LN, Scroggins RP (2013) Biological test methods in ecotoxicology. In: Férard J-F, Blaise C (eds) Encyclopedia of aquatic ecotoxicology. Springer Netherlands, Dordrecht, pp 197–204. (PMID: 10.1007/978-94-007-5704-2_19)
US Environmental Protection Agency (2018) Aquatic life benchmarks and ecological risk assessments for registered pesticides. Washington, DC. [cited 2022, July 14]. Available from: https://www.epa.gov/pesticide-science-andassessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk.
US Environmental Protection Agency (2019) Sulfoxaflor: ecological risk assessment for section 3 registration for various proposed new uses (DP 449891 dated July 10, 2019. [cited 2023, November 15]. Available from: https://www.regulations.gov/document/EPA-HQ-OPP-2010-0889-0566.
van Gool E (1997) Light-induced swimming of Daphnia: can laboratory experiments predict diel vertical migration? Hydrobiologia 360:161–167. (PMID: 10.1023/A:1003113120547)
Vehovszky Á, Farkas A, Ács A, Stoliar O, Székács A, Mörtl M, Győri J (2015) Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system. Aquat Toxicol 167:172–179. (PMID: 10.1016/j.aquatox.2015.08.009)
Watson GB, Olson MB, Beavers KW, Loso MR, Sparks TC (2017) Characterization of a nicotinic acetylcholine receptor binding site for sulfoxaflor, a new sulfoximine insecticide for the control of sap-feeding insect pests. Pestic Biochem Physiol 143:90–94. (PMID: 10.1016/j.pestbp.2017.09.003)
Watts M, Pascoe D (2000) A comparative study of Chironomus riparius Meigen and Chironomus tentans Fabricius (Diptera:Chironomidae) in aquatic toxicity tests. Arch Environ Contam Toxicol 39:299–306. (PMID: 10.1007/s002440010108)
Weis JS, Smith G, Zhou T, Santiago-Bass C, Weis P (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences. Bioscience 51(3):209–217. (PMID: 10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2)
Yang Y, Ran L, Pan T, Yuan F, Hu D, Lu P (2022) Degradation of sulfoxaflor in water and soil: Kinetics, degradation pathways, transformation product identification, and toxicity. J Agric Food Chem 70(11):3400–3408. (PMID: 10.1021/acs.jafc.1c07362)
Yarmohammadian MH, Monsef S, Javanmard SH, Yazdi Y, Amini-Rarani M (2021) (2021) The role of hackathon in education: can hackathon improve health and medical education? J Educ Health Promot 10:334. (PMID: 10.4103/jehp.jehp_1183_20)
معلومات مُعتمدة: 956009 H2020 Marie Skłodowska-Curie Actions
فهرسة مساهمة: Keywords: Behavioural endpoints; Biomechanistic endpoints; Ecotoxicity; Education; Non-conventional endpoints; Sulfoxaflor
المشرفين على المادة: 671W88OY8K (sulfoxaflor)
0 (Neurotoxins)
0 (Pyridines)
0 (Water Pollutants, Chemical)
0 (Sulfur Compounds)
تواريخ الأحداث: Date Created: 20240228 Date Completed: 20240408 Latest Revision: 20240411
رمز التحديث: 20240411
مُعرف محوري في PubMed: PMC10997722
DOI: 10.1007/s11356-024-32566-w
PMID: 38418784
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-32566-w