دورية أكاديمية

Dansyl-tagged xanthate ester as a capping agent to synthesize fluorescent silver nanoparticles with binding affinity toward serum albumin.

التفاصيل البيبلوغرافية
العنوان: Dansyl-tagged xanthate ester as a capping agent to synthesize fluorescent silver nanoparticles with binding affinity toward serum albumin.
المؤلفون: Barik D; Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India., Pidikaka C; Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India., Porel M; Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, India.; Environmental Sciences and Sustainable Engineering Center, Indian Institute of Technology Palakkad, Palakkad, India.
المصدر: Photochemistry and photobiology [Photochem Photobiol] 2024 Jul-Aug; Vol. 100 (4), pp. 980-988. Date of Electronic Publication: 2024 Feb 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Photobiology Country of Publication: United States NLM ID: 0376425 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-1097 (Electronic) Linking ISSN: 00318655 NLM ISO Abbreviation: Photochem Photobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2004->: Lawrence KS : American Society for Photobiology
Original Publication: Augusta, GA: American Society for Photobiology, <1996->
مواضيع طبية MeSH: Silver*/chemistry , Metal Nanoparticles*/chemistry , Serum Albumin*/chemistry, Humans ; Esters/chemistry ; Dansyl Compounds/chemistry ; Protein Binding ; Fluorescent Dyes/chemistry ; Serum Albumin, Bovine/chemistry ; Spectrometry, Fluorescence
مستخلص: Developing multifunctional nanomaterials with distinct photochemical properties, such as high quantum yield, improved photostability, and good biocompatibility is critical for a wide range of biomedical applications. Motivated by this, we designed and synthesized a dansyl-tagged xanthate-based capping agent (DX) for the synthesis of fluorescent silver nanoparticles (AgNPs). The capping agent DX was characterized by 1 H and 13 C-NMR, LC-MS, and FT-IR. The synthesized DX-capped fluorescent AgNPs were thoroughly characterized by UV-visible spectroscopy, fluorescence spectroscopy, field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), and zeta potential. The fluorescent AgNPs showed distinct surface plasmon resonance absorption at λ max  = 414 nm, fluorescence at λ max  = 498 nm, quantum yield = 0.24, zeta potential = +18.6 mV, average size = 18.2 nm. Furthermore, the biological activity of the fluorescent AgNPs was validated by its interaction with the most abundant protein in the blood, that is, BSA (Bovine serum albumin) and HSA (Human serum albumin) with binding constant of 2.34 × 10 4  M -1 and 2.14 × 10 4  M -1 respectively. Interestingly, fluorescence resonance energy transfer (FRET) was observed between the fluorescent AgNPs and BSA/HSA with a FRET efficiency of 77.23% and 56.36%, respectively, indicating strong interaction between fluorescent AgNPs and BSA/HSA.
(© 2024 American Society for Photobiology.)
References: Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: a quantitative approach for understanding the tissue distribution of nanoparticles. Adv. Drug Deliv. Rev. 2023;194:114708.
Gowda BHJ, Mohanto S, Singh A, et al. Nanoparticle‐based therapeutic approaches for wound healing: a review of the state‐of‐the‐art. Mater Today Chem. 2023;27:101319.
Li D, Chen Q, Chun J, Fichthorn K, De Yoreo J, Zheng H. Nanoparticle assembly and oriented attachment: correlating controlling factors to the resulting structures. Chem. Rev. 2023;123(6):3127‐3159.
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of nanoparticle transport across intestinal tissue: an Oral delivery perspective. ACS Nano. 2023;17(14):13044‐13061.
Honeybone D, Peace H, Green M. Infrared emitting and absorbing conjugated polymer nanoparticles as biological imaging probes. J. Mater. Chem. C. 2023;11(24):7860‐7871.
Qiu Y, Yuan B, Cao Y, et al. Recent Progress on near‐infrared fluorescence Heptamethine cyanine dye‐based molecules and nanoparticles for tumor imaging and treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15:e1910.
Chen Z, Chen Y, Xu Y, et al. BODIPY‐based multifunctional nanoparticles for dual mode imaging‐guided tumor photothermal and photodynamic therapy. ACS Appl Bio Mater. 2023;6:3406‐3413.
Zhou Y, Li Q, Wu Y, et al. Molecularly stimuli‐responsive self‐assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano. 2023;17(9):8004‐8025.
Luo L, Zhou H, Wang S, et al. The application of nanoparticle‐based imaging and phototherapy for female reproductive organs diseases. Small. 2024;2207694. doi:10.1002/smll.202207694.
Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle‐based drug delivery for the treatment of traumatic brain injury. Expert Opin. Drug Deliv. 2023;20(1):55‐73.
Iranshahy M, Hanafi‐Bojd MY, Aghili SH, et al. Curcumin‐loaded mesoporous silica nanoparticles for drug delivery: synthesis, biological assays and therapeutic potential–a review. RSC Adv. 2023;13(32):22250‐22267.
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of Green synthesis of zinc oxide nanoparticle by using various natural entities. Inorg Nano‐Metal Chem. 2023;1‐18. doi:10.1080/24701556.2023.2165681.
Abadi B, Hosseinalipour S, Nikzad S, et al. Capping agents for selenium nanoparticles in biomedical applications. J. Clust. Sci. 2023;34(4):1669‐1690.
Khatiwara B, Singh S, Sarangi S, Das A, Dhakal J, Chakraborty P. Application of plant extracts for the synthesis of nanoparticles in Green chemistry: a concise update. Curr Nanomater. 2023;8(3):224‐232.
Afkhami F, Forghan P, Gutmann JL, Kishen A. Silver nanoparticles and their therapeutic applications in endodontics: a narrative review. Pharmaceutics. 2023;15(3):715.
Suthar JK, Vaidya A, Ravindran S. Toxic implications of silver nanoparticles on the central nervous system: a systematic literature review. J. Appl. Toxicol. 2023;43(1):4‐21.
Naysmith A, Mian NS, Rana S. Development of conductive textile fabric using Plackett–Burman optimized Green synthesized silver nanoparticles and in situ polymerized Polypyrrole. Green Chem Lett Rev. 2023;16(1):2158690.
Kaushal A, Khurana I, Yadav P, et al. Advances in therapeutic applications of silver nanoparticles. Chem. Biol. Interact. 2023;382:110590.
Singh R, Mehra R, Walia A, et al. Colorimetric sensing approaches based on silver nanoparticles aggregation for determination of toxic metal ions in water sample: a review. Int. J. Environ. Anal. Chem. 2023;103(6):1361‐1376.
Scarpa E, Cascione M, Griego A, Pellegrino P, Moschetti G, De Matteis V. Gold and silver nanoparticles in Alzheimer's and Parkinson's diagnostics and treatments. Ibrain. 2023;9:1‐18.
Danai L, Rolband LA, Perdomo VA, Skelly E, Kim T, Afonin KA. Optical, structural and antibacterial properties of silver nanoparticles and DNA‐templated silver nanoclusters. Nanomedicine. 2023;18(9):769‐782.
Luceri A, Francese R, Lembo D, Ferraris M, Balagna C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms. 2023;11(3):629‐650.
Menichetti A, Mavridi‐Printezi A, Mordini D, Montalti M. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J Funct Biomater. 2023;14(5):244‐264.
Patel RR, Singh SK, Singh M. Green synthesis of silver nanoparticles: Methods, biological applications, delivery and toxicity. Mater Adv. 2023;4(8):1831‐1849.
Aldakheel FM, Sayed MM, Mohsen D, Fagir MH, El Dein DK. Green synthesis of silver nanoparticles loaded hydrogel for wound healing: Systematic review. Gels. 2023;9(7):530‐550.
Bordiwala RV. Green synthesis and applications of metal nanoparticles – a review article. Results Chem. 2023;8:100832‐100835.
Di Pietro P, Zaccaro L, Comegna D, et al. Silver nanoparticles functionalized with a fluorescent cyclic RGD peptide: a versatile integrin targeting platform for cells and bacteria. RSC Adv. 2016;6(113):112381‐112392.
Jia K, Wang P, Yuan L, Zhou X, Chen W, Liu X. Facile synthesis of luminescent silver nanoparticles and fluorescence interactions with blue‐emitting Polyarylene ether nitrile. J. Mater. Chem. C. 2015;3(15):3522‐3529.
Jose A, Porel M. Probing the interactions of Dansyl appended sequence‐defined oligomers with serum albumins: effect of functionality, hydrophobicity, and architecture. J. Photochem. Photobiol. A Chem. 2023;439:114640.
معلومات مُعتمدة: CRG/2019/002495 Science and Engineering Research Board; SB/S2/RJN-145/2017 Science and Engineering Research Board; MoE/STARS-1/293 Ministry of Education
فهرسة مساهمة: Keywords: capping agent; fluorescence resonance energy transfer; fluorescent silver nanoparticle; serum albumins; xanthate
المشرفين على المادة: 3M4G523W1G (Silver)
0 (Serum Albumin)
0 (Esters)
0 (Dansyl Compounds)
0 (Fluorescent Dyes)
27432CM55Q (Serum Albumin, Bovine)
تواريخ الأحداث: Date Created: 20240228 Date Completed: 20240729 Latest Revision: 20240729
رمز التحديث: 20240729
DOI: 10.1111/php.13927
PMID: 38419115
قاعدة البيانات: MEDLINE
الوصف
تدمد:1751-1097
DOI:10.1111/php.13927