دورية أكاديمية

Genome-wide identification of XTH gene family in Musa acuminata and response analyses of MaXTHs and xyloglucan to low temperature.

التفاصيل البيبلوغرافية
العنوان: Genome-wide identification of XTH gene family in Musa acuminata and response analyses of MaXTHs and xyloglucan to low temperature.
المؤلفون: Tan Y; College of Horticulture, South China Agricultural University, Guangzhou, China.; Institute of Fruit Tree Research, Meizhou Academy of Agriculture and Forestry Sciences, Meizhou, China., Zhan H; College of Horticulture, South China Agricultural University, Guangzhou, China., Chen H; College of Horticulture, South China Agricultural University, Guangzhou, China.; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming, China., Li X; Guangxi Academy of Agricultural Sciences, Nanning, China., Chen C; College of Horticulture, South China Agricultural University, Guangzhou, China., Liu H; College of Horticulture, South China Agricultural University, Guangzhou, China., Chen Y; College of Horticulture, South China Agricultural University, Guangzhou, China., Zhao Z; College of Horticulture, South China Agricultural University, Guangzhou, China., Xiao Y; College of Horticulture, South China Agricultural University, Guangzhou, China., Liu J; College of Horticulture, South China Agricultural University, Guangzhou, China., Zhao Y; College of Horticulture, South China Agricultural University, Guangzhou, China., Su Z; Guangxi Academy of Agricultural Sciences, Nanning, China., Xu C; College of Horticulture, South China Agricultural University, Guangzhou, China.
المصدر: Physiologia plantarum [Physiol Plant] 2024 Mar-Apr; Vol. 176 (2), pp. e14231.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Scandinavian Society For Plant Physiology Country of Publication: Denmark NLM ID: 1256322 Publication Model: Print Cited Medium: Internet ISSN: 1399-3054 (Electronic) Linking ISSN: 00319317 NLM ISO Abbreviation: Physiol Plant Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Scandinavian Society For Plant Physiology
Original Publication: Lund, Sweden [etc.]
مواضيع طبية MeSH: Musa*/genetics , Xylans*, Temperature ; Genome, Plant ; Glucans ; Phylogeny ; Gene Expression Regulation, Plant/genetics
مستخلص: Banana (Musa spp.) production is seriously threatened by low temperature (LT) in tropical and subtropical regions. Xyloglucan endotransglycosylase/hydrolases (XTHs) are considered chief enzymes in cell wall remodelling and play a central role in stress responses. However, whether MaXTHs are involved in the low temperature stress tolerance in banana is not clear. Here, the identification and characterization of MaXTHs were carried out, followed by prediction of their cis-acting elements and protein-protein interactions. In addition, candidate MaXTHs involved in banana tolerance to LT were screened through a comparison of their responses to LT between tolerant and sensitive cultivars using RNA-Seq analysis. Moreover, immunofluorescence (IF) labelling was employed to compare changes in the temporal and spatial distribution of different types of xyloglucan components between these two cultivars upon stress. In total, 53 MaXTHs have been identified, and all were predicted to be located in the cell wall, 14 of them also in the cytoplasm. Only 11 MaXTHs have been found to interact with other proteins. Among 16 MaXTHs with LT responsiveness elements, MaXTH26/29/32/35/50 (Group I/II members) and MaXTH7/8 (Group IIIB members) might be involved in banana tolerance to LT stress. IF results suggested that the content of xyloglucan components recognized by CCRC-M87/103/104/106 antibodies might be negatively related to banana chilling tolerance. In conclusion, we have identified the MaXTH gene family and assessed cell wall re-modelling under LT stress. These results will be beneficial for banana breeding against stresses and enrich the cell wall-mediated resistance mechanism in plants to stresses.
(© 2024 Scandinavian Plant Physiology Society.)
References: Baumann, M.J., Eklöf, J.M., Michel, G., Kallas, A.M., Teeri, T.T., Czjzek, M. et al. (2007) Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases: biological implications for cell wall metabolism. The Plant Cell, 19(6), 1947-1963. Available from: https://doi.org/10.1105/tpc.107.051391.
Cannon, S.B., Mitra, A., Baumgarten, A., Young, N.D. & May, G. (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology, 4, 10. Available from: https://doi.org/10.1186/1471-2229-4-10.
Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y. et al. (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13(8), 1194-1202. Available from: https://doi.org/10.1016/j.molp.2020.06.009.
Cho, S.K., Kim, J.E., Park, J.A., Eom, T.J. & Kim, W.T. (2006) Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letters, 580(13), 3136-3144. Available from: https://doi.org/10.1016/j.febslet.2006.04.062.
Choi, J.Y., Seo, Y.S., Kim, S.J., Kim, W.T. & Shin, J.S. (2011) Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang). Plant Cell Reports, 30(5), 867-877. Available from: https://doi.org/10.1007/s00299-010-0989-3.
D'Hont, A., Denoeud, F., Aury, J.M., Baurens, F.C., Carreel, F., Garsmeur, O. et al. (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213-217. Available from: https://doi.org/10.1038/nature11241.
DiMario, R.J., Clayton, H., Mukherjee, A., Ludwig, M. & Moroney, J.V. (2017) Plant carbonic anhydrases: structures, locations, evolution, and physiological roles. Molecular Plant, 10(1), 30-46. Available from: https://doi.org/10.1016/j.molp.2016.09.001.
Ding, Y., Shi, Y. & Yang, S. (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist, 222(4), 1690-1704. Available from: https://doi.org/10.1111/nph.15696.
FAOSTAT. 2023. http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 6 March 2023).
Franková, L. & Fry, S.C. (2013) Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. Journal of Experimental Botany, 64(12), 3519-3550. Available from: https://doi.org/10.1093/jxb/ert201.
Fry, S.C. (2004) Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytologist, 161(3), 641-675. Available from: https://doi.org/10.1111/j.1469-8137.2004.00980.x.
Fry, S.C., York, W.S., Albersheim, P., Darvill, A., Hayashi, T., Joseleau, J. et al. (1993) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiologia Plantarum, 89(1), 1-3. Available from: https://doi.org/10.1111/j.1399-3054.1993.tb01778.x.
Fu, M.M., Liu, C. & Wu, F. (2019) Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in barley (hordeum vulgare). Molecules, 24(10), 1935. Available from: https://doi.org/10.3390/molecules24101935.
Hayashi, T. & Maclachlan, G. (1984) Pea xyloglucan and cellulose. Plant Physiology, 75(3), 596-604. Available from: https://doi.org/10.1104/pp.75.3.596.
Holland, C., Simmons, T.J., Meulewaeter, F., Hudson, A. & Fry, S.C. (2020) Three highly acidic Equisetum XTHs differ from hetero-trans-β-glucanase in donor substrate specificity and are predominantly xyloglucan homo-transglucosylases. Journal of Plant Physiology, 251, 153210. Available from: https://doi.org/10.1016/j.jplph.2020.153210.
Hrmova, M., Stratilová, B. & Stratilová, E. (2022) Broad specific xyloglucan:xyloglucosyl transferases are formidable players in the re-modelling of plant cell wall structures. International Journal of Molecular Sciences, 23(3), 1656. Available from: https://doi.org/10.3390/ijms23031656.
Hsieh, Y.S. & Harris, P.J. (2009) Xyloglucans of monocotyledons have diverse structures. Molecular Plant, 2(5), 943-965. Available from: https://doi.org/10.1093/mp/ssp06.
Hurst, L.D. (2002). The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends in Genetics, 18(9), 486-487. Available from: https://doi.org/10.1016/s0168-9525(02)02722-1.
Iurlaro, A., De Caroli, M., Sabella, E., De Pascali, M., Rampino, P., De Bellis, L. et al. (2016) Drought and heat differentially affect XTH expression and XET activity and action in 3-day-old seedlings of durum wheat cultivars with different stress susceptibility. Frontiers in Plant Science, 7, 1686. Available from: https://doi.org/10.3389/fpls.2016.01686.
Joshi, R.U., Singh, A.K., Singh, V.P., Rai, R. & Joshi, P. (2023) A review on adaptation of banana (Musa spp.) to cold in subtropics. Plant Breeding, 142(3), 269-283. Available from: https://doi.org/10.1111/pbr.13088.
Klepikova, A.V., Logacheva, M.D., Dmitriev, S.E. & Penin, A.A. (2015) RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genomics, 16(1), 466. Available from: https://doi.org/10.1186/s12864-015-1688-9.
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. Available from: https://doi.org/10.1093/molbev/msw054.
Kuo, Y.T., Chao, Y.T., Chen, W.C., Shih, M.C. & Chang, S.B. (2019) Segmental and tandem chromosome duplications led to divergent evolution of the chalcone synthase gene family in Phalaenopsis orchids. Annals of Botany, 123(1), 69-77. Available from: https://doi.org/10.1093/aob/mcy136.
Kutsuno, T., Chowhan, S., Kotake, T. & Takahashi, D. (2023) Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. Physiologia Plantarum, 175(1), e13837. Available from: https://doi.org/10.1111/ppl.13837.
Li, Q., Hu, A., Dou, W., Qi, J., Long, Q., Zou, X. et al. (2019a) Systematic analysis and functional validation of citrus XTH genes reveal the role of Csxth04 in citrus bacterial canker resistance and tolerance. Frontiers in Plant Science, 10, 1109. Available from: https://doi.org/10.3389/fpls.2019.01109.
Li, Q., Li, H., Yin, C., Wang, X., Jiang, Q., Zhang, R. et al. (2019b) Genome-wide identification and characterization of xyloglucan endotransglycosylase/hydrolase in Ananas comosus during development. Genes, 10(7), 537. Available from: https://doi.org/10.3390/genes10070537.
Li, Y., Zhang, J., Wang, S., Zhang, H., Liu, Y. & Yang, M. (2022) Integrative transcriptomic and metabolomic analyses reveal the flavonoid biosynthesis of Pyrus hopeiensis flowers under cold stress. Horticultural Plant Journal, 9 (3), 395e413. Available from: https://doi.org/10.1016/j.hpj.2022.11.004.
Li, Y., Zheng, X., Wang, C., Hou, D., Li, T., Li, D. et al. (2021) Pear xyloglucan endotransglucosylase/hydrolases PcBRU1 promotes stem growth through regulating cell wall elongation. Plant Science, 312, 111026. Available from: https://doi.org/10.1016/j.plantsci.2021.111026.
Liu, J., Meng, J., Chen, H., Li, X., Su, Z., Chen, C. et al. (2022) Different responses of banana classical AGP genes and cell wall AGP components to low-temperature between chilling sensitive and tolerant cultivars. Plant Cell Reports, 41(8), 1693-1706. Available from: https://doi.org/10.1007/s00299-022-02885-8.
Ma, Y.S., Jie, H.D., Zhao, L., Lv, X.Y., Liu, X.C., Tang, Y.Y. et al. (2022) Identification of the xyloglucan endotransglycosylase/hydrolase (XTH) gene family members expressed in Boehmeria nivea in response to cadmium stress. International Journal of Molecular Sciences, 23(24), 16104. Available from: https://doi.org/10.3390/ijms232416104.
Majeau, N., Arnoldo, M. & Coleman, J.R. (1994) Modification of carbonic anhydrase activity by antisense and over-expression constructs in transgenic tobacco. Plant Molecular Biology, 25(3), 377-385. Available from: https://doi.org/10.1007/bf00043867.
Meng, J., Hu, B., Yi, G., Li, X., Chen, H., Wang, Y. et al. (2020) Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Reports, 39(6), 693-708. Available from: https://doi.org/10.1007/s00299-020-02524-0.
Momayyezi, M., McKown, A.D., Bell, S.C.S. & Guy, R.D. (2020) Emerging roles for carbonic anhydrase in mesophyll conductance and photosynthesis. The Plant Journal, 101(4), 831-844. Available from: https://doi.org/10.1111/tpj.14638.
Murashige, T. & Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. Available from: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
Nilo-Poyanco, R., Vizoso, P., Sanhueza, D., Balic, I., Meneses, C., Orellana, A. et al. (2018) A Prunus persica genome-wide RNA-seq approach uncovers major differences in the transcriptome among chilling injury sensitive and non-sensitive varieties. Physiologia Plantarum, 166(3), 772-793. Available from: https://doi.org/10.1111/ppl.12831.
Nishitani, K. & Tominaga, R. (1992) Endo-xyloglucan transferase, a novel class of glycosyltransferase that catalyzes transfer of a segment of xyloglucan molecule to another xyloglucan molecule. Journal of Biological Chemistry, 267(29), 21058-21064. Available from: https://doi.org/10.1016/s0021-9258(19)36797-3.
Niu, Y., Hu, B., Li, X., Chen, H., Takáč, T., Šamaj, J. et al. (2018) Comparative digital gene expression analysis of tissue-cultured plantlets of highly resistant and susceptible banana cultivars in response to Fusarium oxysporum. International Journal of Molecular Sciences, 19(2), 350. Available from: https://doi.org/10.3390/ijms19020350.
Pauly, M., Gille, S., Liu, L., Mansoori, N., de Souza, A., Schultink, A. et al. (2013). Hemicellulose biosynthesis. Planta, 238(4), 627-642. Available from: https://doi.org/10.1007/s00425-013-1921-1.
Purugganan, M.M., Braam, J. & Fry, S.C. (1997) The Arabidopsis TCH4 xyloglucan endotransglycosylase. Substrate specificity, pH optimum, and cold tolerance. Plant Physiology, 115(1), 181-190. Available from: https://doi.org/10.1104/pp.115.1.181.
Qiao, T., Zhang, L., Yu, Y., Pang, Y., Tang, X., Wang, X. et al. (2022) Identification and expression analysis of xyloglucan endotransglucosylase/hydrolase (XTH) family in grapevine (Vitis vinifera L.). PeerJ, 10, e13546. Available from: https://doi.org/10.7717/peerj.13546.
Rose, J.K.C., Braam, J., Fry, S.C. & Nishitani, K. (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant & Cell Physiology, 43(12), 1421-1435. Available from: https://doi.org/10.1093/pcp/pcf171.
Scheller, H.V. & Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61(1), 263-289. Available from: https://doi.org/10.1146/annurev-arplant-042809-112315.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D. et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498-2504. Available from: https://doi.org/10.1101/gr.1239303.
Shi, H., Ye, T., Zhong, B., Liu, X., Jin, R. & Chan, Z. (2014) AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytologist, 203(2), 554-567. Available from: https://doi.org/10.1111/nph.12812.
Shi, Y.Z., Zhu, X.F., Miller, J.G., Gregson, T., Zheng, S.J. & Fry, S.C (2015) Distinct catalytic capacities of two aluminium-repressed Arabidopsis thaliana xyloglucan endotransglucosylase/hydrolases, XTH15 and XTH31, heterologously produced in Pichia. Phytochemistry, 112, 160-169. Available from: https://doi.org/10.1016/j.phytochem.2014.09.020.
Shinohara, N. & Nishitani, K. (2021) Cryogenian origin and subsequent diversification of the plant cell-wall enzyme XTH family. Plant & Cell Physiology, 62(12), 1874-1889. Available from: https://doi.org/10.1093/pcp/pcab093.
Simmons, T.J., Mohler, K.E., Holland, C., Goubet, F., Franková, L., Houston, D.R. et al. (2015) Hetero-trans-β-glucanase, an enzyme unique to Equisetum plants, functionalizes cellulose. The Plant Journal, 83(5), 753-769. Available from: https://doi.org/10.1111/tpj.12935.
Song, L., Valliyodan, B., Prince, S., Wan, J. & Nguyen, H. (2018) Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance. International Journal of Molecular Sciences, 19(9), 2705. Available from: https://doi.org/10.3390/ijms19092705.
Stratilová, B., Kozmon, S., Stratilová, E. & Hrmova, M. (2020) Plant xyloglucan xyloglucosyl transferases and the cell wall structure: subtle but significant. Molecules, 25(23), 5619. Available from: https://doi.org/10.3390/molecules25235619.
Takahashi, D., Gorka, M., Erban, A., Graf, A., Kopka, J., Zuther, E. et al. (2019) Both cold and sub-zero acclimation induce cell wall modification and changes in the extracellular proteome in Arabidopsis thaliana. Scientific Reports, 9(1), 2289. Available from: https://doi.org/10.1038/s41598-019-38688-3.
Takahashi, D., Johnson, K.L., Hao, P., Tuong, T., Erban, A., Sampathkumar, A. et al. (2020) Cell wall modification by the xyloglucan endotransglucosylase/hydrolase XTH19 influences freezing tolerance after cold and sub-zero acclimation. Plant, Cell & Environment, 44(3), 915-930. Available from: https://doi.org/10.1111/pce.13953.
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673-4680. Available from: https://doi.org/10.1093/nar/22.22.4673.
Tuomivaara, S.T., Yaoi, K., O'Neill, M.A. & York, W.S. (2015) Generation and structural validation of a library of diverse xyloglucan-derived oligosaccharides, including an update on xyloglucan nomenclature. Carbohydrate Research, 402, 56-66. Available from: https://doi.org/10.1016/j.carres.2014.06.031.
Vincken, J.P., York, W.S., Beldman, G. & Voragen, A.G. (1997) Two general branching patterns of xyloglucan, XXXG and XXGG. Plant Physiology, 114(1), 9-13. Available from: https://doi.org/10.1104/pp.114.1.9.
Vyse, K., Schaarschmidt, S., Erban, A., Kopka, J. & Zuther, E. (2022) Specific CBF transcription factors and cold-responsive genes fine-tune the early triggering response after acquisition of cold priming and memory. Physiologia Plantarum, 174(4), e13740. Available from: https://doi.org/10.1111/ppl.13740.
Wang, D., Lu, Q., Wang, X., Ling, H. & Huang, N. (2023) Elucidating the role of SlXTH5 in tomato fruit softening. Horticultural Plant Journal, 9(4), 777e788. Available from: https://doi.org/10.1016/j.hpj.2022.12.005.
Wang, M., Xu, Z., Ding, A. & Kong, Y. (2018) Genome-wide identification and expression profiling analysis of the xyloglucan endotransglucosylase/hydrolase gene family in tobacco (Nicotiana tabacum L.). Genes, 9(6), 273. Available from: https://doi.org/10.3390/genes9060273.
Wei, W., Fan, Z., Chen, J., Kuang J., Lu, W. & Shan, W. (2017) A banana PHD-type transcription factor MaPHD1 represses a cell wall-degradation gene MaXTH6 during fruit ripening. Horticultural Plant Journal, 3(5), 190-198. Available from: https://doi.org/10.1016/j.hpj.2017.08.003.
Wu, Z., Cui, C., Xing, A., Xu, X., Sun, Y., Tian, Z. et al. (2021) Identification and response analysis of xyloglucan endotransglycosylase/hydrolases (XTH) family to fluoride and aluminum treatment in Camellia sinensis. BMC Genomics, 22(1), 761. Available from: https://doi.org/10.1186/s12864-021-08056-5.
Wu, D., Liu, A., Qu, X., Liang, J. & Song, M. (2020) Genome-wide identification, and phylogenetic and expression profiling analyses, of XTH gene families in Brassica rapa L. and Brassica oleracea L. BMC Genomics, 21(1), 782. Available from: https://doi.org/10.1186/s12864-020-07153-1.
Xu, C., Takáč, T., Burbach, C., Menzel, D. & Šamaj, J. (2011) Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA). BMC Plant Biology, 11(1), 38. Available from: https://doi.org/10.1186/1471-2229-11-38.
Xu, G., Li, L., Zhou, J., Lv, D., Zhao, D. & Qin, S. (2022) Comparison of transcriptome and metabolome analysis revealed differences in cold resistant metabolic pathways in different apple cultivars under low temperature stress. Horticultural Plant Journal, 9 (2): 183e198. Available from: https://doi.org/10.1016/j.hpj.2022.09.002.
Xu, P., Fang, S., Chen, H. & Cai, W. (2020) The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis. The Plant Journal, 104(1), 59-75. Available from: https://doi.org/10.1111/tpj.14905.
Xu, W., Campbell, P., Vargheese, A.K. & Braam, J. (1996) The Arabidopsis XET-related gene family: environmental and hormonal regulation of expression. The Plant Journal, 9(6), 879-889. Available from: https://doi.org/10.1046/j.1365-313x.1996.9060879.x.
Yan, J., Huang, Y., He, H., Han, T., Di, P., Sechet, J. et al. (2019) Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis. Journal of Experimental Botany, 70(19), 5495-5506. Available from: https://doi.org/10.1093/jxb/erz311.
Yan, Y., Takáč, T., Li, X., Chen, H., Wang, Y., Xu, E. et al. (2015) Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress. Frontiers in Plant Science, 6, 353. Available from: https://doi.org/10.3389/fpls.2015.00353.
Yang, Q.S., Gao, J., He, W.D., Dou, T.X., Ding, L.J., Wu, J.H. et al. (2015) Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress. BMC Genomics, 16(1), 446. Available from: https://doi.org/10.1186/s12864-015-1551-z.
Yang, Z., Zhang, R. & Zhou, Z. (2022) The XTH gene family in Schima superba: genome-wide identification, expression profiles, and functional interaction network analysis. Frontiers in Plant Science, 13, 911761. Available from: https://doi.org/10.3389/fpls.2022.911761.
Yokoyama, R. & Nishitani, K. (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant & Cell Physiology, 42(10), 1025-1033. Available from: https://doi.org/10.1093/pcp/pce154.
Yuan, W., Liu, J., Takáč, T., Chen, H., Li, X., Meng, J. et al. (2021) Genome-wide identification of banana Csl gene family and their different responses to low temperature between chilling-sensitive and tolerant cultivars. Plants, 10(1), 122. Available from: https://doi.org/10.3390/plants10010122.
Zhang, J.Z., He, P.W., Xu, X.M., Lü, Z.F., Cui, P., George, M.S. et al. (2023) Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in sweet potato [Ipomoea batatas (L.) Lam]. International Journal of Molecular Sciences, 24(1), 775. Available from: https://doi.org/10.3390/ijms24010775.
Zhu, J., Tang, G., Xu, P., Li, G., Ma, C., Li, P. et al. (2022) Genome-wide identification of xyloglucan endotransglucosylase/hydrolase gene family members in peanut and their expression profiles during seed germination. PeerJ, 10, e13428. Available from: https://doi.org/10.7717/peerj.13428.
Zhu, X.F., Shi, Y.Z., Lei, G.J., Fry, S.C., Zhang, B.C., Zhou, Y.H. et al. (2012). XTH31, encoding an in vitro XEH/XET- active enzyme, regulates aluminum sensitivity by modulating in vivo XET action, cell wall xyloglucan content, and aluminum binding capacity in Arabidopsis. The Plant Cell, 24(11), 4731-4747. Available from: https://doi.org/10.1105/tpc.112.106039.
معلومات مُعتمدة: 2023A1515012913 Natural Science Foundation of Guangdong Province; 2021B0707010004 Key Research and Development Program of Guangdong Province; SL2023B03J00937 Guangzhou Science and Technology Plan; 2023KJ109 Guangdong Province Special Fund for Modern Agriculture Industry Technology Innovation Teams; CARS-31-04 Earmarked Fund for Modern Agro-industry Technology Research System
المشرفين على المادة: 37294-28-3 (xyloglucan)
0 (Glucans)
0 (Xylans)
تواريخ الأحداث: Date Created: 20240229 Date Completed: 20240301 Latest Revision: 20240301
رمز التحديث: 20240301
DOI: 10.1111/ppl.14231
PMID: 38419576
قاعدة البيانات: MEDLINE
الوصف
تدمد:1399-3054
DOI:10.1111/ppl.14231