دورية أكاديمية

Embracing prospects for reducing the numbers of animals used in aquaculture research.

التفاصيل البيبلوغرافية
العنوان: Embracing prospects for reducing the numbers of animals used in aquaculture research.
المؤلفون: Lazado CC; Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway., Ytteborg E; Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway., Noble C; Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway.
المصدر: Journal of fish biology [J Fish Biol] 2024 Jun; Vol. 104 (6), pp. 1654-1661. Date of Electronic Publication: 2024 Feb 29.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing Country of Publication: England NLM ID: 0214055 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1095-8649 (Electronic) Linking ISSN: 00221112 NLM ISO Abbreviation: J Fish Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2003- : Oxford, UK : Blackwell Publishing
Original Publication: London, New York, Published for the Fisheries Society of the British Isles by Academic Press.
مواضيع طبية MeSH: Aquaculture*/methods , Animal Welfare*, Animals ; Fishes ; European Union ; Norway
مستخلص: The principles of three Rs-REPLACEMENT, REDUCTION, and REFINEMENT-govern the protection and use of animals, including fish, for research purposes in the European Union and Norway. In this paper, we discuss some straightforward steps to simplify the delivery of these principles at the idea stage and adapt some of these examples for conducting fish trials related to health and welfare. Although some of the approaches are well established in other animal science arenas, we believe there can be a timely recap of their key facets. We discuss a number of simple strategies to emphasize how a reduction in fish numbers can be achieved from initial project conception to implementation, highlighting not only their advantages but also their limitations. We also highlight the role that funding agencies can play in the implementation of the 3R principles in aquaculture research. These simple points can be used in frameworks to initiate a broader and dynamic intersectoral dialogue among stakeholders of aquaculture research on how to promote ethics and embrace opportunities for this within the tenets of the 3Rs.
(© 2024 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.)
References: Alipio, H. R., Albaladejo‐Riad, N., & Lazado, C. C. (2022). Sulphide donors affect the expression of mucin and sulphide detoxification genes in the mucosal organs of Atlantic salmon (Salmo salar). Frontiers in Physiology, 13, 1083672.
ASRU, HOAiSRU Department for Business, & I. a. S. B. & Science, G. O. f. (2014). Working to reduce the use of animals in scientific research. Information Policy Team, The National Archives.
Barreto, M. O., Rey Planellas, S., Yang, Y., Phillips, C., & Descovich, K. (2022). Emerging indicators of fish welfare in aquaculture. Reviews in Aquaculture, 14, 343–361.
Cabillon, N. A. R., & Lazado, C. C. (2022). Exogenous sulphide donors modify the gene expression patterns of Atlantic salmon nasal leukocytes. Fish & Shellfish Immunology, 120, 1–10.
Carletto, D., Furtado, F., Zhang, J., Asimakopoulos, A. G., Eggen, M., Verstege, G. C., Faggio, C., Mota, V. C., & Lazado, C. C. (2022). Mode of application of peracetic acid‐based disinfectants has a minimal influence on the antioxidant defences and mucosal structures of Atlantic salmon (Salmo salar) parr. Frontiers in Physiology, 13, 900593.
Chang, E. D., Owen, S. F., Hogstrand, C., & Bury, N. R. (2021). Developing in vitro models to assess fish gill excretion of emerging contaminants. Analytical Methods, 13, 1470–1478.
Czubala, M. A., Eilles, E., Staubi, A., Ipseiz, N., Vogt, M., Zieglowski, L., Ernst, L., Tolba, R. H., Taylor, P. R., & Weiskirchen, R. (2022). 3R blackboard: A platform for animal and organ sharing. Laboratory Animals, 56, 292–296.
de Blas, I., Muniesa, A., Vallejo, A., & Ruiz‐Zarzuela, I. (2020). Assessment of sample size calculations used in aquaculture by simulation techniques. Frontiers in Veterinary Science, 7, 253.
Diederich, K., Schmitt, K., Schwedhelm, P., Bert, B., & Heinl, C. (2022). A guide to open science practices for animal research. PLoS Biology, 20, e3001810.
Eggel, M., & Würbel, H. (2021). Internal consistency and compatibility of the 3Rs and 3Vs principles for project evaluation of animal research. Laboratory Animals, 55, 233–243.
Espmark, Å.M., Kolarevic, J., Åsgård, T. and Terjesen, B.F. (2017), Tank size and fish management history matters in experimental design. Aquac Res, 48: 2876–2894.
European Commission. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union. 2010;50:33–79. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063.
FAO. (2022). The state of world fisheries and aquaculture 2022. In Towards Blue Transformation. FAO.
Føre, M., Frank, K., Norton, T., Svendsen, E., Alfredsen, J. A., Dempster, T., Eguiraun, H., Watson, W., Stahl, A., Sunde, L. M., Schellewald, C., Skøien, K. R., Alver, M. O., & Berckmans, D. (2018). Precision fish farming: A new framework to improve production in aquaculture. Biosystems Engineering, 173, 176–193.
Goswami, M., Yashwanth, B. S., Trudeau, V., & Lakra, W. S. (2022). Role and relevance of fish cell lines in advanced in vitro research. Molecular Biology Reports, 49, 2393–2411.
Grimm, H., Biller‐Andorno, N., Buch, T., Dahlhoff, M., Davies, G., Cederroth, C. R., Maissen, O., Lukas, W., Passini, E., Törnqvist, E., Olsson, I. A. S., & Sandström, J. (2023). Advancing the 3Rs: Innovation, implementation, ethics and society. Frontiers in Veterinary Science, 10, 1185706.
Grunow, B., Franz, G. P., & Tönißen, K. (2021). In vitro fish models for the analysis of ecotoxins and temperature increase in the context of global warming. Toxics, 9, 286.
Grunow, B., & Strauch, S. M. (2023). Status assessment and opportunities for improving fish welfare in animal experimental research according to the 3R‐guidelines. Reviews in Fish Biology and Fisheries, 33, 1075–1093.
Gupta, A., Bringsdal, E., Salbuvik, N., Knausgård, K.M., Goodwin, M. (2022). An Accurate Convolutional Neural Networks Approach to Wound Detection for Farmed Salmon. In: Iliadis, L., Jayne, C., Tefas, A., Pimenidis, E. (eds) Engineering Applications of Neural Networks. EANN 2022. Communications in Computer and Information Science, vol 1600. Springer, Cham. https://doi.org/10.1007/978-3-031-08223-8_12.
Hawkins, D., Gallacher, E., & Gammell, M. (2013). Statistical power, effect size and animal welfare: Recommendations for good practice. Animal Welfare, 22, 339–344.
Hawkins, P., Dennison, N., Goodman, G., Hetherington, S., Llywelyn‐Jones, S., Ryder, K., & Smith, A. J. (2011). Guidance on the severity classification of scientific procedures involving fish: Report of a working group appointed by the Norwegian consensus‐platform for the replacement, reduction and Refinement of animal experiments (Norecopa). Laboratory Animals, 45, 219–224.
Hubrecht, R. C., & Carter, E. (2019). The 3Rs and humane experimental technique: Implementing change. Animals (Basel), 9, 754.
Johansen, R., Needham, J. R., Colquhoun, D. J., Poppe, T. T., & Smith, A. J. (2006). Guidelines for health and welfare monitoring of fish used in research. Laboratory Animals, 40, 323–340.
Karlsen, C., Ytteborg, E., Timmerhaus, G., Høst, V., Handeland, S., Jørgensen, S. M., & Krasnov, A. (2018). Atlantic salmon skin barrier functions gradually enhance after seawater transfer. Scientific Reports, 8, 9510.
Kovalcsik, R., Devlin, T., Loux, S., Martinek, M., May, J., Pickering, T., Tapp, R., Wilson, S., & Serota, D. (2006). Animal reuse: Balancing scientific integrity and animal welfare. Laboratory Animals, 35, 49–53.
Krasnov, A., Afanasyev, S., Nylund, S., & Rebl, A. (2020). Multigene expression assay for assessment of the immune status of Atlantic salmon. Genes, 11, 1236.
Lazado, C. C., Iversen, M., Johansen, L.‐H., Brenne, H., Sundaram, A. Y., & Ytteborg, E. (2023). Nasal responses to elevated temperature and Francisella noatunensis infection in Atlantic cod (Gadus morhua). Genomics, 2023, 110735.
Lazado, C. C., Timmerhaus, G., Breiland, M. W., Pittman, K., & Hytterød, S. (2021). Multiomics provide insights into the key molecules and pathways involved in the physiological adaptation of Atlantic salmon (Salmo salar) to chemotherapeutic‐induced oxidative stress. Antioxidants, 10, 1931.
Lazado, C. C., & Voldvik, V. (2020). Temporal control of responses to chemically induced oxidative stress in the gill mucosa of Atlantic salmon (Salmo salar). Journal of Photochemistry and Photobiology B: Biology, 205, 111851.
Lazado, C. C., Voldvik, V., Breiland, M. W., Osório, J., Hansen, M. H., & Krasnov, A. (2020). Oxidative chemical stressors alter the physiological state of the nasal olfactory mucosa of Atlantic salmon. Antioxidants, 9, 1144.
Lazado, C. C., Voldvik, V., Timmerhaus, G., & Andersen, Ø. (2023). Fast and slow releasing sulphide donors engender distinct transcriptomic alterations in Atlantic salmon hepatocytes. Aquatic Toxicology, 260, 106574.
Lindberg, S.‐K., Durland, E., Heia, K., Noble, C., Alvestad, R., & Difford, G. F. (2023). Digital scoring of welfare traits in Atlantic salmon (Salmo salar L.)‐a proof of concept study quantifying dorsal fin haemorrhaging via hyperspectral imaging. Frontiers in Animal Science, 4, 1162384.
Ling, E. N., & Cotter, D. (2003). Statistical power in comparative aquaculture studies. Aquaculture, 224, 159–168.
Løkka, G., Gamil, A. A. A., Evensen, Ø., & Kortner, T. M. (2023). Establishment of an in vitro model to study viral infections of the fish intestinal epithelium. Cell, 12, 1531.
Mota, V. C., Striberny, A., Verstege, G. C., Difford, G. F., & Lazado, C. C. (2022). Evaluation of a recirculating aquaculture system research facility designed to address current knowledge needs in Atlantic salmon production. Frontiers in Animal Science, 26, 876504.
Pasquariello, R., Pavlovic, R., Chacon, M. A., Camin, F., Verdile, N., Løkka, G., Panseri, S., Faustini, M., Tandler, A., Peggs, D., Kortner, T. M., Bitan, A., Brevini, T. A. L., & Gandolfi, F. (2023). Development of a rainbow trout (Oncorhynchus mykiss) intestinal in vitro platform for profiling amino acid digestion and absorption of a complete diet. Animals, 13, 2278.
Pedersen, L.‐F., Suhr, K. I., Dalsgaard, J., Pedersen, P. B., & Arvin, E. (2012). Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems. Aquaculture, 338‐341, 237–245.
Prescott, M., & Lidster, K. (2017). Improving quality of science through better animal welfare: The NC3Rs strategy. Lab Animal, 46, 152–156.
Raposo de Magalhães, C., Farinha, A. P., Carrilho, R., Schrama, D., Cerqueira, M., & Rodrigues, P. M. (2023). A new window into fish welfare: A proteomic discovery study of stress biomarkers in the skin mucus of gilthead seabream (Sparus aurata). Journal of Proteomics, 281, 104904.
Rehberger, K., Kropf, C., & Segner, H. (2018). In vitro or not in vitro: A short journey through a long history. Environmental Sciences Europe, 30, 23.
Rowan, A. N., Weer, J. C., & University, T. (1993). The value and utility of animals in research: Summary proceedings. Tufts Center for Animals and Public Policy.
Russell, W. M. S. & Burch, R. L. (1959). The principles of humane experimental technique. Methuen & Co Ltd.
Sanahuja, I., Guerreiro, P. M., Girons, A., Fernandez‐Alacid, L., & Ibarz, A. (2023). Evaluating the repetitive mucus extraction effects on mucus biomarkers, mucous cells, and the skin‐barrier status in a marine fish model. Frontiers in Marine Science, 9, 1095246.
Smith, A. J., Clutton, R. E., Lilley, E., Hansen, K. E. A., & Brattelid, T. (2018). PREPARE: Guidelines for planning animal research and testing. Laboratory Animals, 52, 135–141.
Smith, D., Anderson, D., Degryse, A. D., Bol, C., Criado, A., Ferrara, A., Franco, N. H., Gyertyan, I., Orellana, J. M., Ostergaard, G., Varga, O., & Voipio, H. M. (2018). Classification and reporting of severity experienced by animals used in scientific procedures: FELASA/ECLAM/ESLAV working group report. Laboratory Animals, 52, 5–57.
Sneddon, L. U., Halsey, L. G., & Bury, N. R. (2017). Considering aspects of the 3Rs principles within experimental animal biology. Journal of Experimental Biology, 220, 3007–3016.
Stentiford, G. D., Bateman, I. J., Hinchliffe, S. J., Bass, D., Hartnell, R., Santos, E. M., Devlin, M. J., Feist, S. W., Taylor, N. G. H., Verner‐Jeffreys, D. W., van Aerle, R., Peeler, E. J., Higman, W. A., Smith, L., Baines, R., Behringer, D. C., Katsiadaki, I., Froehlich, H. E., & Tyler, C. R. (2020). Sustainable aquaculture through the one health lens. Nature Food, 1, 468–474.
Sveen, L., Timmerhaus, G., Johansen, L.‐H., & Ytteborg, E. (2021). Deep neural network analysis ‐ a paradigm shift for histological examination of health and welfare of farmed fish. Aquaculture, 532, 736024.
Taylor, K., & Alvarez, L. R. (2019). An estimate of the number of animals used for scientific purposes worldwide in 2015. Alternatives to Laboratory Animals, 47, 196–213.
Terjesen, B. F., Summerfelt, S. T., Nerland, S., Ulgenes, Y., Fjæra, S. O., Megård Reiten, B. K., Selset, R., Kolarevic, J., Brunsvik, P., Bæverfjord, G., Takle, H., Kittelsen, A. H., & Åsgård, T. (2013). Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments. Aquacultural Engineering, 54, 49–63.
Timmerhaus, G., Lazado, C. C., Cabillon, N. A., Reiten, B. K. M., & Johansen, L.‐H. (2021). The optimum velocity for Atlantic salmon post‐smolts in RAS is a compromise between muscle growth and fish welfare. Aquaculture, 532, 736076.
Torrissen, M., Ytteborg, E., Svensen, H., Stoknes, I., Nilsson, A., Østbye, T. K., Berge, G. M., Bou, M., & Ruyter, B. (2023). Investigation of the functions of n‐3 very‐long‐chain PUFAs in skin using in vivo Atlantic salmon and in vitro human and fish skin models. British Journal of Nutrition, 130, 1–17.
Workman, P., Aboagye, E. O., Balkwill, F., Balmain, A., Bruder, G., Chaplin, D. J., Double, J. A., Everitt, J., Farningham, D. A. H., Glennie, M. J., Kelland, L. R., Robinson, V., Stratford, I. J., Tozer, G. M., Watson, S., Wedge, S. R., Eccles, S. A., & An ad hoc committee of the National Cancer Research, I. (2010). Guidelines for the welfare and use of animals in cancer research. British Journal of Cancer, 102, 1555–1577.
Ytteborg, E., Falconer, L., Krasnov, A., Johansen, L.‐H., Timmerhaus, G., Johansson, G. S., Afanasyev, S., Høst, V., Hjøllo, S. S., & Hansen, Ø. J. (2023). Climate change with increasing seawater temperature will challenge the health of farmed Atlantic cod (Gadus morhua L.). Frontiers in Marine Science, 10, 1232580.
Ytteborg, E., Hansen, Ø. J., Høst, V., Afanasyev, S., Vieweg, I., Nahrgang, J., & Krasnov, A. (2020). Morphology, transcriptomics and in vitro model of skin from polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua). Fishes, 5, 34.
Ytteborg, E., Lazado, C. C., Noble, C., Hansen, R.‐I., & Johansen, L.‐H. (2023). The skin mucosal barrier of lumpfish (Cyclopterus lumpus L.) is weakened by exposure to potential aquaculture production related stressors. Journal of Fish Biology, 19, 1–15.
معلومات مُعتمدة: 331680 Norges Forskningsråd; 194050 Norges Forskningsråd; 239-2022 Nordisk Ministerråd
فهرسة مساهمة: Keywords: 3R principles; animal welfare; aquaculture; fish welfare; research ethics
تواريخ الأحداث: Date Created: 20240229 Date Completed: 20240626 Latest Revision: 20240626
رمز التحديث: 20240627
DOI: 10.1111/jfb.15701
PMID: 38423545
قاعدة البيانات: MEDLINE
الوصف
تدمد:1095-8649
DOI:10.1111/jfb.15701