دورية أكاديمية

Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper.

التفاصيل البيبلوغرافية
العنوان: Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper.
المؤلفون: Cui YL; Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China., Guo JS; Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China., Zhang CX; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China., Yu XP; Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China., Li DT; Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China.
المصدر: Insect molecular biology [Insect Mol Biol] 2024 Aug; Vol. 33 (4), pp. 350-361. Date of Electronic Publication: 2024 Mar 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific For The Royal Entomological Society Country of Publication: England NLM ID: 9303579 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2583 (Electronic) Linking ISSN: 09621075 NLM ISO Abbreviation: Insect Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell Scientific For The Royal Entomological Society
Original Publication: Oxford : Published for the Royal Entomological Society by Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Hemiptera*/genetics , Hemiptera*/metabolism , Insect Proteins*/metabolism , Insect Proteins*/genetics , Insect Proteins*/chemistry, Animals ; RNA Interference ; Aldehyde Oxidoreductases/metabolism ; Aldehyde Oxidoreductases/genetics ; Microscopy, Electron, Scanning
مستخلص: Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.
(© 2024 Royal Entomological Society.)
References: Alves‐Bezerra, M. & Gondim, K.C. (2012) Triacylglycerol biosynthesis occurs via the glycerol‐3‐phosphate pathway in the insect Rhodnius prolixus. Biochimica et Biophysica Acta, 1821(12), 1462–1471. Available from: https://doi.org/10.1016/j.bbalip.2012.08.002.
Antony, B., Fujii, T., Moto, K., Matsumoto, S., Fukuzawa, M., Nakano, R. et al. (2009) Pheromone‐gland‐specific fattyacyl reductase in the adzuki bean borer, Ostrinia scapulalis (Lepidoptera: Crambidae). Insect Biochemistry and Molecular Biology, 39(2), 90–95. Available from: https://doi.org/10.1016/j.ibmb.2008.10.008.
Bhatt‐Wessel, B., Jordan, T.W., Miller, J.H. & Peng, L.F. (2018) Role of DGAT enzymes in triacylglycerol metabolism. Archives of Biochemistry and Biophysics, 655, 1–11. Available from: https://doi.org/10.1016/j.abb.2018.08.001.
Blomquist, G.J., Nelson, D.R. & De Renobales, M. (1987) Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology, 6(4), 227–265. Available from: https://doi.org/10.1002/arch.940060404.
Brasaemle, D.L. (2007) The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research, 48(12), 2547–2559. Available from: https://doi.org/10.1194/jlr.R700014-JLR200.
Cao, J.S., Li, J.L., Li, D.M., Tobin, J.F. & Gimeno, R.E. (2006) Molecular identification of microsomal acyl‐CoA: glycerol‐3‐phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proceedings of the National Academy of Sciences, 103(52), 19695–19700. Available from: https://doi.org/10.1073/pnas.0609140103.
Carot‐Sans, G., Muñoz, L., Piulachs, M.D., Guerrero, A. & Rosell, G. (2015) Identification and characterization of a fatty acyl reductase from a Spodoptera littoralis female gland involved in pheromone biosynthesis. Insect Molecular Biology, 24(1), 82–92. Available from: https://doi.org/10.1111/imb.12138.
Chapman, R.F. (2013) The insects structure and function, 5th edition. Britain: Cambridge University Press.
Chino, H., Katase, H., Downer, R.G. & Takahashi, K. (1981) Diacylglycerol‐carrying lipoprotein of hemolymph of the American cockroach: purification, characterization, and function. Journal of Lipid Research, 22(1), 7–15.
Coleman, R.A., Lewin, T.M. & Muoio, D.M. (2000) Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annual Review of Nutrition, 20(2000), 77–103. Available from: https://doi.org/10.1146/annurev.nutr.20.1.77.
Cornell, R.B. & Northwood, I.C. (2000) Regulation of CTP: phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends in Biochemical Sciences, 25(9), 441–447. Available from: https://doi.org/10.1016/S0968-0004(00)01625-X.
Cornell, R.B. & Ridgway, N.D. (2015) CTP: phosphocholine cytidylyltransferase: function, regulation, and structure of an amphitropic enzyme required for membrane biogenesis. Progress in Lipid Research, 59, 147–171. Available from: https://doi.org/10.1016/j.plipres.2015.07.001.
Datta, J. & Banik, S.C. (2021) Insecticide resistance in the Brown Planthopper, Nilaparvata lugens (Stål): mechanisms and status in Asian countries. Journal of the Entomological Research Society, 23(3), 225–238. Available from: https://doi.org/10.51963/jers.v23i3.2016.
Dou, X.Y., Zhang, A.J. & Jurenka, R. (2020) Functional identification of fatty acyl reductases in female pheromone gland and tarsi of the corn earworm, Helicoverpa zea. Insect Biochemistry and Molecular Biology, 116, 103260. Available from: https://doi.org/10.1016/j.ibmb.2019.103260.
Fan, X.B. & Zhang, W.Q. (2022) Genome‐wide identification of FAR gene family and functional analysis of NlFAR10 during embryogenesis in the brown planthopper Nilaparvata lugens. International Journal of Biological Macromolecules, 223(A), 798–811. Available from: https://doi.org/10.1016/j.ijbiomac.2022.11.075.
Foster, D.A. (2013) Phosphatidic acid and lipid‐sensing by mTOR. Trends in Endocrinology & Metabolism, 24(6), 272–278. Available from: https://doi.org/10.1016/j.tem.2013.02.003.
Gibellini, F. & Smith, T.K. (2010) The Kennedy pathway‐de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 62(6), 414–428. Available from: https://doi.org/10.1002/iub.337.
Grönke, S., Mildner, A., Fellert, S., Tennagels, N., Petry, S., Müller, G. et al. (2005) Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metabolism, 1(5), 323–330. Available from: https://doi.org/10.1016/j.cmet.2005.04.003.
Gu, S.H., Wu, K.M., Guo, Y.Y., Pickett, J.A., Field, L.M., Zhou, J.J. et al. (2013) Identification of genes expressed in the sex pheromone gland of the black cutworm Agrotis ipsilon with putative roles in sex pheromone biosynthesis and transport. BMC Genomics, 14, 636. Available from: https://doi.org/10.1186/1471-2164-14-636.
Guo, J.S., Wang, X.Q., Li, D.T., Song, D.D. & Zhang, C.X. (2020) Three‐dimensional architecture of a mechanoreceptor in the brown planthopper, Nilaparvata lugens, revealed by FIB‐SEM. Cell and Tissue Research, 379(3), 487–495. Available from: https://doi.org/10.1007/s00441-019-03122-7.
Hu, Y.H., Chen, X.M., Yang, P. & Ding, W.F. (2018) Characterization and functional assay of a fatty acyl‐CoA reductase gene in the scale insect, Ericerus pela Chavannes (Hemiptera: Coccoidae). Archives of Insect Biochemistry and Physiology, 97(4), e21445. Available from: https://doi.org/10.1002/arch.21445.
Hu, Y.H. & Cui, L.K. (2021) Fatty acyl‐CoA reductase of Ericerus pela (Hemiptera: Coccoidae): localization in insect cells and bioinformatic analysis. Pakistan Journal of Zoology, 53(6), 2399–2405. Available from: https://doi.org/10.17582/journal.pjz/20191016041034.
Huang, H.J., Bao, Y.Y., Lao, S.H., Huang, X.H., Ye, Y.Z., Wu, J.X. et al. (2015) Rice ragged stunt virus‐induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Scientific Reports, 5(1), 11413. Available from: https://doi.org/10.1038/srep11413.
Huang, H.J., Xue, J., Zhuo, J.C., Cheng, R.L., Xu, H.J. & Zhang, C.X. (2017) Comparative analysis of the transcriptional responses to low and high temperatures in three rice planthopper species. Molecular Ecology, 26(10), 2726–2737. Available from: https://doi.org/10.1111/mec.14067.
Jaspers, M.H., Pflanz, R., Riedel, D., Kawelke, S., Feussner, I. & Schuh, R. (2014) The fatty acyl‐CoA reductase waterproof mediates airway clearance in Drosophila. Developmental Biology, 385(1), 23–31. Available from: https://doi.org/10.1016/j.ydbio.2013.10.022.
Kaczmarek, A. & Boguś, M. (2021) The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ, 9, e12563. Available from: https://doi.org/10.7717/peerj.12563.
Karen, W., Cecilia, C., Virginia, G., Susana, P., Emanuel, M.G., Leandro, P. et al. (2018) TAG synthesis and storage under osmotic stress. A requirement for preserving membrane homeostasis in renal cells. Biochimica et Biophysica Acta (BBA)‐Molecular and Cell Biology of Lipids, 1863(9), 1108–1120. Available from: https://doi.org/10.1016/j.bbalip.2018.06.012.
Kinney, A.J., Clarkson, D.T. & Loughman, B.C. (1987) The regulation of phosphatidylcholine biosynthesis in rye (Secale cereale) roots‐stimulation of the nucleotide pathway by low temperature. The Biochemical Journal, 242(3), 755–759. Available from: https://doi.org/10.1042/bj2420755.
Kumar, S., Chitraju, C., Farese, R.V., Walther, T.C., & Burd, C.G. (2021) Conditional targeting of phosphatidylserine decarboxylase to lipid droplets[J]. Biology Open, 10(3), bio058516. https://doi.org/10.1242/bio.058516.
Li, D.T., Chen, X., Wang, X.Q., Moussian, B. & Zhang, C.X. (2019) The fatty acid elongase gene family in the brown planthopper, Nilaparvata lugens. Insect Biochemistry and Molecular Biology, 108, 32–43. Available from: https://doi.org/10.1016/j.ibmb.2019.03.005.
Li, D.T., Chen, X., Wang, X.Q. & Zhang, C.X. (2019) FAR gene enables the brown planthopper to walk and jump on water in paddy field. Science China Life Sciences, 62(11), 1521–1531. Available from: https://doi.org/10.1007/s11427-018-9462-4.
Li, D.T., Dai, Y.T., Chen, X., Wang, X.Q., Li, Z.D., Moussian, B. et al. (2020) Ten fatty acyl‐CoA reductase family genes were essential for the survival of the destructive rice pest, Nilaparvata lugens. Pest Management Science, 76(7), 2304–2315. Available from: https://doi.org/10.1002/ps.5765.
Li, D.T., Guo, J.S., Wang, X.Q., Moussian, B. & Zhang, C.X. (2021) Three‐dimensional reconstruction of pore canals in the cuticle of the brown planthopper. Science China Life Sciences, 64(11), 1–3. Available from: https://doi.org/10.1007/S11427-020-1857-7.
Li, D.T., Pei, X.J., Ye, Y.X., Wang, X.Q., Wang, Z.C., Chen, N. et al. (2021) Cuticular hydrocarbon plasticity in three rice planthopper species. International Journal of Molecular Sciences, 22(14), 7733. Available from: https://doi.org/10.3390/ijms22147733.
Liu, X., Giarola, V., Quan, W.L., Song, X.M. & Bartels, D. (2021) Identification and characterization of CTP: phosphocholine cytidylyltransferase CpCCT1 in the resurrection plant Craterostigma plantagineum. Plant Sciences, 302(2021), 110698. Available from: https://doi.org/10.1016/j.plantsci.2020.110698.
Locke, M. (2001) The Wigglesworth lecture: insects for studying fundamental problems in biology. Journal of Insect Physiology, 47(4), 495–507. Available from: https://doi.org/10.1016/S0022-1910(00)00123-2.
Lu, K., Zhou, J.M., Chen, X., Li, W.R., Li, Y., Cheng, Y.B. et al. (2018) Deficiency of brummer impaires lipid mobilization and JH‐mediated vitellogenesis in the Brown planthopper, Nilaparvata lugens. Frontiers in Physiology, 9, 1535. Available from: https://doi.org/10.3389/fphys.2018.01535.
Man, D. & Podolak, M. (2007) Tin compounds interaction with membranes of egg lecithin liposomes. Zeitschrift fur Naturforschung C, 62(5/6), 427–432. Available from: https://doi.org/10.1515/znc-2007-5-617.
Masaru, O. & Yusuke, K. (2021) Detection of edible insect derived phospholipids with polyunsaturated fatty acids by thin‐layer chromatography, gas chromatography, and enzymatic methods. Journal of Food Composition and Analysis, 99, 103869. Available from: https://doi.org/10.1016/j.jfca.2021.103869.
McFie, P.J., Banman, S.L. & Stone, S.J. (2018) Diacylglycerol acyltransferase‐2 contains a c‐terminal sequence that interacts with lipid droplets. Biochimica et Biophysica Acta (BBA)‐ Molecular and Cell Biology of Lipids, 1863(9), 1068–1081. Available from: https://doi.org/10.1016/j.bbalip.2018.06.008.
Michael, A.W. (2015) As the fat flies: the dynamic lipid droplets of Drosophila embryos. Biochimica et Biophysica Acta, 1851(9), 1156–1185. Available from: https://doi.org/10.1016/j.bbalip.2015.04.002.
Moto, K., Yoshiga, T., Yamamoto, M., Takahashi, S., Okano, K., Ando, T. et al. (2003) Pheromone gland‐specific fatty‐acyl reductase of the silkmoth, Bombyx mori. Proceedings of the National Academy of Sciences of the United States of America, 100(16), 9156–9161. Available from: https://doi.org/10.1073/pnas.1531993100.
Moussian, B. (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 40(5), 363–375. Available from: https://doi.org/10.1016/j.ibmb.2010.03.003.
Moussian, B., Seifarth, C., Muller, U., Berger, J. & Schwarz, H. (2006) Cuticle differentiation during Drosophila embryogenesis. Arthropod Structure & Development, 35(3), 137–152. Available from: https://doi.org/10.1016/j.asd.2006.05.003.
Noh, M.Y., Kramer, K.J., Muthukrishnan, S., Kanost, M.R., Beeman, R.W. & Arakane, Y. (2014) Two major cuticular proteins are required for assembly of horizontal laminae and vertical pore canals in rigid cuticle of Tribolium castaneum. Insect Biochemistry and Molecular Biology, 53, 22–29. Available from: https://doi.org/10.1016/j.ibmb.2014.07.005.
Noh, M.Y., Muthukrishnan, S., Kramer, K.J. & Arakane, Y. (2015) Tribolium castaneum RR‐1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle. PLoS Genetics, 11(2), e1004963. Available from: https://doi.org/10.1371/journal.pgen.1004963.
Nuo, S.M., Yang, A.J., Li, G.C., Xiao, H.Y. & Liu, N.Y. (2021) Transcriptome analysis identifies candidate genes in the biosynthetic pathway of sex pheromones from a zygaenid moth, Achelura yunnanensis (Lepidoptera: Zygaenidae). PeerJ, 9, e12641. Available from: https://doi.org/10.7717/peerj.12641.
Palm, W., Sampaio, J.L., Brankatschk, M., Carvalho, M., Mahmoud, A., Shevchenko, A. et al. (2012) Lipoproteins in Drosophila melanogaster‐assembly, function, and influence on tissue lipid composition. PLoS Genetics, 8(7), e1002828. Available from: https://doi.org/10.1371/journal.pgen.1002828.
Pan, P.L., Ye, Y.X., Lou, Y.H., Lu, J.B., Cheng, C., Shen, Y. et al. (2018) A comprehensive omics analysis and functional survey of cuticular proteins in the brown planthopper. Proceedings of the National Academy of Sciences, 115(20), 5175–5180. Available from: https://doi.org/10.1073/pnas.1716951115.
Qiao, J.W. (2021) Functional study of genes on regulating cuticular hydrocarbon production and transport in Acyrthosiphon pisum. Doctoral dissertation. Shanxi: Northwest Agricultural and Forestry University.
Robert, C., Couëdelo, L., Vaysse, C. & Michalski, M.C. (2019) Vegetable lecithins: a review of their compositional diversity, impact on lipid metabolism and potential in cardiometabolic disease prevention. Biochimie, 169(C), 121–132. Available from: https://doi.org/10.1016/j.biochi.2019.11.017.
Rommelaere, S., Boquete, J.P., Piton, J., Kondo, S. & Lemaitre, B. (2019) The exchangeable apolipoprotein Nplp2 sustains lipid flow and heat acclimation in drosophila. Cell Papers, 27(3), 886–899.e6. Available from: https://doi.org/10.1016/j.celrep.2019.03.074.
Roux‐Pertus, C., Oliviero, E., Viguier, V., Fernandez, F., Maillot, F., Ferry, O. et al. (2017) Multiscale characterization of the hierarchical structure of Dynastes ercules elytra. Micron, 101, 16–24. Available from: https://doi.org/10.1016/j.micron.2017.05.001.
Selvy, P.E., Lavieri, R.R., Lindsley, C.W. & Brown, H.A. (2011) Phospholipase D: enzymology, functionality, and chemical modulation. Chemical Reviews, 111(10), 6064–6119. Available from: https://doi.org/10.1021/cr200296t.
Skowronek, P., Wójcik, Ł. & Strachecka, A. (2021) Fat body—multifunctional insect tissue. Insects, 12(6), 547. Available from: https://doi.org/10.3390/insects12060547.
Teerawanichpan, P., Robertson, A.J. & Qiu, X. (2010) A fatty acyl‐CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochemistry and Molecular Biology, 40(9), 641–649. Available from: https://doi.org/10.1016/j.ibmb.2010.06.004.
Tong, H.J., Wang, Y., Wang, S.P., Omar, M.A.A., Li, Z.C., Li, Z.H. et al. (2022) Fatty acyl‐CoA reductase influences wax biosynthesis in the cotton mealybug, Phenacoccus solenopsis Tinsley. Communication Biology, 5(1), 1108. Available from: https://doi.org/10.1038/S42003-022-03956-Y.
Ugrankar, R., Liu, Y.L., Provaznik, J., Schmitt, S. & Lehmann, M. (2011) Lipin is a central regulator of adipose tissue development and function in Drosophila melanogaster. Molecular and Cellular Biology, 31(8), 1646–1656. Available from: https://doi.org/10.1128/mcb.01335-10.
Vance, J.E. & Vance, D.E. (2004) Phospholipid biosynthesis in mammalian cells. Biochemistry and Cell Biology, 82(1), 113–128. Available from: https://doi.org/10.1139/o03-073.
Wang, B., Huang, F.J., Wang, L.Y., Luo, J. & Guan, Y. (2022) Application of the serial 3D reconstruction technique to the study of the midgut ultrastructure of Drosophila melanogaster. Chinese Journal of Applied Entomology, 59(4), 932–940. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=KCZS202204023&DbName=CJFQ2022.
Wang, H., Airola, M.V. & Reue, K. (2017) How lipid droplets “TAG” along: Glycerolipid synthetic enzymes and lipid storage. Biochimica et Biophysica Acta (BBA)‐Molecular and Cell Biology of Lipids, 10(B), 1131–1145. Available from: https://doi.org/10.1016/j.bbalip.2017.06.010.
Wigglesworth, V.B. (1975) Incorporation of lipid into the epicuticle of Rhodnius (Hemiptera). Journal of Cell Science, 19(3), 459–485. Available from: https://doi.org/10.1242/jcs.19.3.459.
Xue, J., Zhou, X., Zhang, C.X., Yu, L.L., Fan, H.W., Wang, Z. et al. (2014) Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 15(12), 521. Available from: https://doi.org/10.1186/s13059-014-0521-0.
Yang, Y., Zhang, J.Z. & Zhao, X.M. (2021) Expression and function analysis of fatty acid desaturatase family genes of Locusta migratoria. Journal of Shanxi University (Natural Science Edition), 44(1), 134–141. Available from: https://doi.org/10.13451/j.sxu.ns.2019157.
Yin, M.Y., Zhang, C.X., Ryosuke, M., Xi, Y.C. & Wang, X.C. (2020) Advances in biological activity and application of phosphatidylcholine. Packaging Engineering, 41(13), 31–39. Available from: https://doi.org/10.19554/j.cnki.1001-3563.2020.13.005.
Yu, Z.T., Wang, Y.W., Zhao, X.M., Liu, X.J., Ma, E., Moussian, B. et al. (2017) The ABC transporter ABCH‐9C is needed for cuticle barrier construction in Locusta migratoria. Insect Biochemistry and Molecular Biology, 87, 90–99. Available from: https://doi.org/10.1016/j.ibmb.2017.06.005.
Zechner, R., Zimmermann, R., Eichmann, T.O., Kohlwein, S.D., Haemmerle, G., Lass, A. et al. (2007) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metabolism, 15(3), 279–291. Available from: https://doi.org/10.1016/j.cmet.2011.12.018.
Zhao, C., Du, G., Skowronek, K., Frohman, M.A. & Bar‐Sagi, D. (2007) Phospholipase D2‐generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nature Cell Biology, 9(6), 706–712. Available from: https://doi.org/10.1038/ncb1594.
Zuber, R., Norum, M., Wang, Y.W., Oehl, K., Gehring, N., Accard, D. et al. (2018) The ABC transporter Snu and the extracellular protein Snsl cooperate in the formation of the lipid‐based inward and outward barrier in the skin of Drosophila. European Journal of Cell Biology, 97(2), 90–101. Available from: https://doi.org/10.1016/j.ejcb.2017.12.003.
معلومات مُعتمدة: 32001895 National Natural Science Foundation of China; 32372526 National Natural Science Foundation of China; U21A20223 National Nature Science Foundation of China Regional Innovation and Development Joint Fund Key Support Project; LY23C140007 Natural Science Foundation of Zhejiang Province
فهرسة مساهمة: Keywords: 3D reconstruction; Nilaparvata lugens; cuticle; fatty acyl‐CoA reductase; lipidomics; pore canal
المشرفين على المادة: 0 (Insect Proteins)
EC 1.2.- (Aldehyde Oxidoreductases)
EC 1.2.1.42 (hexadecanal dehydrogenase (acylating))
تواريخ الأحداث: Date Created: 20240302 Date Completed: 20240709 Latest Revision: 20240731
رمز التحديث: 20240801
DOI: 10.1111/imb.12903
PMID: 38430546
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2583
DOI:10.1111/imb.12903