دورية أكاديمية

Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing.

التفاصيل البيبلوغرافية
العنوان: Inhibition of mitochondrial folate metabolism drives differentiation through mTORC1 mediated purine sensing.
المؤلفون: Zarou MM; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK., Rattigan KM; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK., Sarnello D; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK., Shokry E; Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK., Dawson A; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK., Ianniciello A; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK., Dunn K; Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK., Copland M; Paul O'Gorman Leukaemia Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G12 0ZD, UK., Sumpton D; Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK., Vazquez A; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK. avazque1@protonmail.com., Helgason GV; Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK. vignir.helgason@glasgow.ac.uk.
المصدر: Nature communications [Nat Commun] 2024 Mar 02; Vol. 15 (1), pp. 1931. Date of Electronic Publication: 2024 Mar 02.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Pub. Group
مواضيع طبية MeSH: Leukemia, Myeloid* , Leukemia, Myelogenous, Chronic, BCR-ABL Positive*/drug therapy, Humans ; Mechanistic Target of Rapamycin Complex 1 ; AMP-Activated Protein Kinases ; Purines/therapeutic use ; Purine Nucleotides ; Folic Acid/metabolism
مستخلص: Supporting cell proliferation through nucleotide biosynthesis is an essential requirement for cancer cells. Hence, inhibition of folate-mediated one carbon (1C) metabolism, which is required for nucleotide synthesis, has been successfully exploited in anti-cancer therapy. Here, we reveal that mitochondrial folate metabolism is upregulated in patient-derived leukaemic stem cells (LSCs). We demonstrate that inhibition of mitochondrial 1C metabolism through impairment of de novo purine synthesis has a cytostatic effect on chronic myeloid leukaemia (CML) cells. Consequently, changes in purine nucleotide levels lead to activation of AMPK signalling and suppression of mTORC1 activity. Notably, suppression of mitochondrial 1C metabolism increases expression of erythroid differentiation markers. Moreover, we find that increased differentiation occurs independently of AMPK signalling and can be reversed through reconstitution of purine levels and reactivation of mTORC1. Of clinical relevance, we identify that combination of 1C metabolism inhibition with imatinib, a frontline treatment for CML patients, decreases the number of therapy-resistant CML LSCs in a patient-derived xenograft model. Our results highlight a role for folate metabolism and purine sensing in stem cell fate decisions and leukaemogenesis.
(© 2024. The Author(s).)
References: Tibbetts, A. S. & Appling, D. R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30, 57–81 (2010). (PMID: 2064585010.1146/annurev.nutr.012809.104810)
Yang, M. & Vousden, K. H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer 16, 650–662 (2016). (PMID: 2763444810.1038/nrc.2016.81)
Labuschagne, C. F., van den Broek, N. J., Mackay, G. M., Vousden, K. H. & Maddocks, O. D. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 7, 1248–1258 (2014). (PMID: 2481388410.1016/j.celrep.2014.04.045)
Maddocks, O. D. K. et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature 544, 372–376 (2017). (PMID: 2842599410.1038/nature22056)
Ducker, G. S. et al. Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab. 23, 1140–1153 (2016). (PMID: 27211901490956610.1016/j.cmet.2016.04.016)
Vazquez, A., Tedeschi, P. M. & Bertino, J. R. Overexpression of the mitochondrial folate and glycine–serine pathway: a new determinant of methotrexate selectivity in tumors. Cancer Res. 73, 478–482 (2013). (PMID: 2313591010.1158/0008-5472.CAN-12-3709)
Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 1–10 (2014). (PMID: 10.1038/ncomms4128)
Meiser, J. et al. Increased formate overflow is a hallmark of oxidative cancer. Nat. Commun. 9, 1–12 (2018). (PMID: 10.1038/s41467-018-03777-w)
Chabner, B. A. & Roberts, T. G. Chemotherapy and the war on cancer. Nat. Rev. Cancer 5, 65–72 (2005). (PMID: 1563041610.1038/nrc1529)
Zarou, M. M., Vazquez, A. & Helgason, G. V. Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia 35, 1539–1551 (2021). (PMID: 33707653817984410.1038/s41375-021-01189-2)
Chabner, B. A. et al. Polyglutamation of methotrexate. Is methotrexate a prodrug? J. Clin. Investig. 76, 907–912 (1985). (PMID: 241307442395210.1172/JCI112088)
Ferreri, A. et al. A multicenter study of treatment of primary CNS lymphoma. Neurology 58, 1513–1520 (2002). (PMID: 1203478910.1212/WNL.58.10.1513)
Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat. Rev. Cancer 5, 172–183 (2005). (PMID: 1571903110.1038/nrc1567)
Cilloni, D. & Saglio, G. Molecular pathways: Bcr-abl. Clin. Cancer Res. 18, 930–937 (2012). (PMID: 2215654910.1158/1078-0432.CCR-10-1613)
Skorski, T. et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86, 726–736 (1995).
O’Hare, T., Deininger, M. W., Eide, C. A., Clackson, T. & Druker, B. J. Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin. Cancer Res. 17, 212–221 (2011). (PMID: 2109833710.1158/1078-0432.CCR-09-3314)
Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997). (PMID: 921209810.1038/nm0797-730)
Gao, M., Choi, Y., Kang, S., Youn, J. & Cho, N. CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene 29, 2672–2680 (2010). (PMID: 2019081210.1038/onc.2010.35)
Vincent, Z., Urakami, K., Maruyama, K., Yamaguchi, K. & Kusuhara, M. CD133-positive cancer stem cells from Colo205 human colon adenocarcinoma cell line show resistance to chemotherapy and display a specific metabolomic profile. Genes Cancer 5, 250 (2014). (PMID: 25221643416214010.18632/genesandcancer.23)
Saito, Y. et al. Identification of therapeutic targets for quiescent, chemotherapy-resistant human leukemia stem cells. Sci. Transl. Med. 2, 17ra19–17ra19 (2010). (PMID: 10.1126/scitranslmed.3000349)
Quesenberry, P. J. & Colvin, G. A. Hematopoietic stem cells, progenitor cells, and cytokines. Williams Hematol. 338, 153–174 (2001).
Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008). (PMID: 1906208610.1016/j.cell.2008.10.048)
Warrell, R. P. Jr et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med. 324, 1385–1393 (1991). (PMID: 185049810.1056/NEJM199105163242002)
Gocek, E. & Marcinkowska, E. Differentiation therapy of acute myeloid leukemia. Cancers 3, 2402–2420 (2011). (PMID: 24212816375742410.3390/cancers3022402)
Ianniciello, A. et al. ULK1 inhibition promotes oxidative stress–induced differentiation and sensitizes leukemic stem cells to targeted therapy. Sci. Transl. Med. 13, eabd5016 (2021). (PMID: 34586834761207910.1126/scitranslmed.abd5016)
Chomel, J.-C. et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood J. Am. Soc. Hematol. 118, 3657–3660 (2011).
Corbin, A. S. et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Investig. 121, 396–409 (2011). (PMID: 2115703910.1172/JCI35721)
Hamilton, A. et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. J. Am. Soc. Hematol. 119, 1501–1510 (2012).
Kuntz, E. M. et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat. Med. 23, 1234–1240 (2017). (PMID: 28920959565746910.1038/nm.4399)
Abraham, A. et al. SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J. Clin. Investig. 129, 2685–2701 (2019). (PMID: 31180336659722310.1172/JCI127080)
Baksh, S. C. et al. Extracellular serine controls epidermal stem cell fate and tumour initiation. Nat. cell Biol. 22, 779–790 (2020). (PMID: 32451440734360410.1038/s41556-020-0525-9)
Scott, M. T. et al. Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition EZH2 and tyrosine kinase inhibition in CML stem cells. Cancer Discov. 6, 1248–1257 (2016). (PMID: 27630125653853210.1158/2159-8290.CD-16-0263)
Ducker, G. S. et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma. Proc. Natl Acad. Sci. 114, 11404–11409 (2017). (PMID: 29073064566450910.1073/pnas.1706617114)
Meiser, J. et al. Serine one-carbon catabolism with formate overflow. Sci. Adv. 2, e1601273 (2016).
Pikman, Y. et al. Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Leukemia 36, 348–360 (2022). (PMID: 3434147910.1038/s41375-021-01361-8)
Pietzke, M., Meiser, J. & Vazquez, A. Formate metabolism in health and disease. Mol. Metab. 33, 23–37 (2020). (PMID: 3140232710.1016/j.molmet.2019.05.012)
Oizel, K. et al. Formate induces a metabolic switch in nucleotide and energy metabolism. Cell Death Dis. 11, 1–14 (2020). (PMID: 10.1038/s41419-020-2523-z)
Kim, J., Yang, G., Kim, Y., Kim, J. & Ha, J. AMPK activators: mechanisms of action and physiological activities. Exp. Mol. Med. 48, e224 (2016). (PMID: 27034026485527610.1038/emm.2016.16)
Lalic, H., Dembitz, V., Lukinovic-Skudar, V., Banfic, H. & Visnjic, D. 5-Aminoimidazole-4-carboxamide ribonucleoside induces differentiation of acute myeloid leukemia cells. Leuk. lymphoma 55, 2375–2383 (2014). (PMID: 2435924510.3109/10428194.2013.876633)
Dembitz, V. et al. The ribonucleoside AICAr induces differentiation of myeloid leukemia by activating the ATR/Chk1 via pyrimidine depletion. J. Biol. Chem. 294, 15257–15270 (2019). (PMID: 31431503680250410.1074/jbc.RA119.009396)
Rutherford, T., Clegg, J. & Weatherall, D. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 280, 164–165 (1979). (PMID: 9535410.1038/280164a0)
Chen, K. et al. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc. Natl. Acad. Sci. USA 106, 17413–17418 (2009). (PMID: 19805084276268010.1073/pnas.0909296106)
Kuželová, K., Grebeňová, D., Marinov, I. & Hrkal, Z. Fast apoptosis and erythroid differentiation induced by imatinib mesylate in JURL‐MK1 cells. J. Cell. Biochem. 95, 268–280 (2005). (PMID: 1577066410.1002/jcb.20407)
Bigarella, C. L., Liang, R. & Ghaffari, S. Stem cells and the impact of ROS signaling. Development 141, 4206–4218 (2014). (PMID: 25371358430291810.1242/dev.107086)
Takubo, K. et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell 7, 391–402 (2010). (PMID: 2080497410.1016/j.stem.2010.06.020)
Manic, G., Obrist, F., Kroemer, G., Vitale, I. & Galluzzi, L. Chloroquine and hydroxychloroquine for cancer therapy. Mol. Cell. Oncol. 1, e29911 (2014). (PMID: 27308318490517110.4161/mco.29911)
Hoxhaj, G. et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 21, 1331–1346 (2017). (PMID: 29091770568947610.1016/j.celrep.2017.10.029)
Emmanuel, N. et al. Purine nucleotide availability regulates mTORC1 activity through the Rheb GTPase. Cell Rep. 19, 2665–2680 (2017). (PMID: 2865861610.1016/j.celrep.2017.05.043)
García-Cañaveras, J. C. et al. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35, 377–388 (2021). (PMID: 3238208110.1038/s41375-020-0845-6)
Wilke, A. C. et al. SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood J. Am. Soc. Hematol. 139, 538–553 (2022).
Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016). (PMID: 26912861478637210.1126/science.aad0489)
Hsu, P. P. et al. Nucleotide depletion promotes cell fate transitions by inducing DNA replication stress. bioRxiv, 2022.2008. 2016.503984 (2022).
Bhatia, R. et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003). (PMID: 1257633410.1182/blood-2002-09-2780)
Holyoake, T., Jiang, X., Eaves, C. & Eaves, A. Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood J. Am. Soc. Hematol. 94, 2056–2064 (1999).
Dohla, J. et al. Metabolic determination of cell fate through selective inheritance of mitochondria. Nat. Cell Biol. 24, 148–154 (2022). (PMID: 35165416761237810.1038/s41556-021-00837-0)
Clarkson, B., Strife, A., Wisniewski, D., Lambek, C. & Liu, C. Chronic myelogenous leukemia as a paradigm of early cancer and possible curative strategies. Leukemia 17, 1211–1262 (2003). (PMID: 1283571510.1038/sj.leu.2402912)
McWeeney, S. K. et al. A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib. Blood J. Am. Soc. Hematol. 115, 315–325 (2010).
Zhao, H. et al. MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood J. Am. Soc. Hematol. 139, 761–778 (2022).
Januszewicz, E., Rabizadah, E., Maimon, Z., Zaizov, R. & Shaklai, M. Inhibition by retinoic acid of myeloid progenitors in chronic myeloid leukemia and myeloproliferative disease: increased sensitivity in blastic phase of chronic myeloid leukemia. Pathology 20, 1–6 (1988). (PMID: 316379610.3109/00313028809085187)
Yin, L. et al. Terminal differentiation of chronic myelogenous leukemia cells is induced by targeting of the MUC1-C oncoprotein. Cancer Biol. Ther. 10, 483–491 (2010). (PMID: 20592495303460210.4161/cbt.10.5.12584)
Zuo, S. et al. Establishment of a novel mesenchymal stem cell-based regimen for chronic myeloid leukemia differentiation therapy. Cell Death Dis. 12, 208 (2021). (PMID: 33627636790492610.1038/s41419-021-03499-w)
Paquette, R. et al. Interferon-α induces dendritic cell differentiation of CML mononuclear cells in vitro and in vivo. Leukemia 16, 1484–1489 (2002). (PMID: 1214568910.1038/sj.leu.2402602)
Essers, M. A. G. & Trumpp, A. Targeting leukemic stem cells by breaking their dormancy. Mol. Oncol. 4, 443–450 (2010). (PMID: 20599449552793010.1016/j.molonc.2010.06.001)
Caroline et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014). (PMID: 10.1016/j.molcel.2014.05.008)
Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014). (PMID: 24805240410448210.1038/nature13236)
Pikman, Y. et al. Targeting MTHFD2 in acute myeloid leukemia. J. Exp. Med. 213, 1285–1306 (2016). (PMID: 27325891492501810.1084/jem.20151574)
Allegra, C. J., Drake, J. C., Jolivet, J. & Chabner, B. A. Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc. Natl. Acad. Sci. 82, 4881–4885 (1985). (PMID: 386082939046110.1073/pnas.82.15.4881)
Gorlick, R. et al. Intrinsic and acquired resistance to methotrexate in acute leukemia. N. Engl. J. Med. 335, 1041–1048 (1996). (PMID: 879393010.1056/NEJM199610033351408)
O’Prey, J. et al. Application of CRISPR/Cas9 to autophagy research. Methods Enzymol. 588, 79–108 (2017). (PMID: 2823712010.1016/bs.mie.2016.09.076)
Voorde, J. V. et al. Improving the metabolic fidelity of cancer models with a physiological cell culture medium. Sci. Adv. 5, eaau7314 (2019). (PMID: 10.1126/sciadv.aau7314)
معلومات مُعتمدة: C57352/A29754 Cancer Research UK (CRUK); A25142 Cancer Research UK (CRUK); A17196 Cancer Research UK (CRUK); A31287 Cancer Research UK (CRUK); A17196 Cancer Research UK (CRUK); A21140 Cancer Research UK (CRUK); KKL1069 Kay Kendall Leukaemia Fund (KKLF); 18006 Bloodwise; GN21ON384 NHS Greater Glasgow and Clyde
المشرفين على المادة: EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
EC 2.7.11.31 (AMP-Activated Protein Kinases)
0 (Purines)
0 (Purine Nucleotides)
935E97BOY8 (Folic Acid)
تواريخ الأحداث: Date Created: 20240302 Date Completed: 20240305 Latest Revision: 20240306
رمز التحديث: 20240307
مُعرف محوري في PubMed: PMC10908830
DOI: 10.1038/s41467-024-46114-0
PMID: 38431691
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-1723
DOI:10.1038/s41467-024-46114-0